K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a. Xét tam giác AHO và tam giác BKO, có:
\(\widehat{BKO}=\widehat{AHO}=90^0\)
\(\widehat{O}:chung\)
Vậy tam giác AHO đồng dạng tam giác BKO ( g.g )
b.Xét tam giác EAK và tam giác EBH, có:
\(\widehat{AEK}=\widehat{BEH}\) ( đối đỉnh )
\(\widehat{AKE}=\widehat{BHE}=90^0\)
Vậy tam giác EAK đồng dạng tam giác EBH ( g.g )
\(\Rightarrow\dfrac{EK}{EH}=\dfrac{EA}{EB}\)
\(\Rightarrow EK.EB=EA.EH\)
c.Áp dụng định lý pitago vào tam giác vuông OAH, có:
\(OA^2=OH^2+AH^2\)
\(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
Ta có: tam giác AHO đồng dạng tam giác BKO
\(\Rightarrow\dfrac{OA}{OB}=\dfrac{AH}{BK}\)
\(\Leftrightarrow\dfrac{5}{4}=\dfrac{4}{BK}\)
\(\Leftrightarrow5BK=16\)
\(\Leftrightarrow BK=\dfrac{16}{5}cm\)
Đề bài sai ngay từ câu a, hai tam giác này đồng dạng chứ ko bằng nhau (chúng chỉ bằng nhau khi E nằm trên tia phân giác trong góc xOy)