Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAF vuông tại A và ΔMBE vuông tại B có
MA=MB
\(\widehat{AMF}=\widehat{BME}\)
Do đó: ΔMAF=ΔMBE
=>MF=ME
b:
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(1)
Ta có: MA=MB
=>M nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra OM là đường trung trực của BA
=>OM\(\perp\)BA
Ta có hình vẽ sau:
x O y M A B N 1 2
Xét ΔOAM và ΔOBM có:
OM: cạnh chung
OA = OB (gt)
MA = MB (gt)
\(\Rightarrow\) ΔOAM = ΔOBM (c-c-c)
\(\Rightarrow\) \(\widehat{O_1}\) = \(\widehat{O_2}\) ( 2 góc tương ứng)
\(\Rightarrow\) OM là tia phân giác của \(\widehat{xOy}\) (đpcm)
a.xét tam giác aom và bom có ao bằng bo ;am=bm;om cạnh chung
suy ra 2 tam giác này = (n)
mà om nằm giữa oa à ob
suy ra...
thôg cảm nha mk lười ko buồn viết kí hiệu