K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:

OC = OA ( gt)

^BOC = ^DOA 

OB = OD

=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)

b) Có: OB = OD ; OA = OC ( gt)

=> OB - OA = OD - OC

=> AB = CD ( 2)

Từ (1)  => ^OBC = ^ODA  => ^ABK = ^CDK ( 3)

Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)

Từ (2) ; (3) ; (4) =>  \(\Delta\)AKB = \(\Delta\)CKD => AK = CK

Xét \(\Delta\)OAK và \(\Delta\)OCK có:

OA = OC 

^OAK = ^OCK 

AK = CK 

=>  \(\Delta\)OAK = \(\Delta\)OCK 

=> ^AOK = ^COK

=> OK là phân giác của ^xOy.

25 tháng 11 2019

Em cảm ơn cô nhìu ạ <3

9 tháng 7 2015

a) Đầu tiên bạn xét tam giác OBD và tam giác OCA = nhau theo trường hợp c.g.c xog suy ra 2 cạnh tương ứng 

b) chứng minh AB=DC theo cách cộng đoạn thẳng 

    chứng minh góc BAE = góc EDC theo cách tổng 3 góc trong 1 tam giác (đầu tiên đưa ra  tam giác OBD và tam giác OCA = nhau theo chứng minh trên từ đó suy ra góc B= góc C, sau đó có góc AEB= góc DEC vì đối đỉnh, mà cộng tổng 3 góc trong 1 tam giác luôn =180 độ nên góc BAE = góc EDC)

từ đó xét tam giác ABE=tam giác DCE theo trường hợp g.c.g

 

30 tháng 10 2016

a) Xét tg OBC và tg ODA

          góc O chung

          OB= OD ( giả thiết)  (*)

          OC= OA (giả thiết)

=> tg OBC= tg ODA ( C-G-C)

Suy ra : AD= BC (1)

            góc ABE= góc EDC (2)

            góc OCB= góc OAD (3)

b) Xét tg EAB và tg ECD:    góc ABE= góc EDC ( do 2)  (4)

                                         góc BAE= góc ECD [kề bù với 2 góc OCB và OAD do (3) ]   (5)

Mặt khác: A nằm giữa O, B ( OA<OB) => AB= OB - OA

               C nằm giữa O, D ( OC<OD) => CD= OD - OC

   Mà do (*) => AB= CD (6)

  Từ (4), (5) và (6) suy ra: tg AEB= tg CED (G-C-G)

c) tg AEB= tg CED => AE= CE

                              mà OA= OC

                           OE chung của 2 tam giác

Suy ra tg OAE= tg OCE (C-C-C) (**) => góc AOE = góc COA

Do AD cắt BC(giả thiết) tại E nằm trong góc xOy => Tia OE nằm giữa 2 tia OB, OD (***)

 Từ (**) và (***) suy ra: OE là tia phân giác của góc xOy.

Hết. Chúc bạn học tốt

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: \(\widehat{MBA}=\widehat{MDC}\)

Xét ΔCDB và ΔABD có 

DC=AB

\(\widehat{CDB}=\widehat{ABD}\)

DB chung

Do đó: ΔCDB=ΔABD

Suy ra: \(\widehat{MAB}=\widehat{MCD}\)

Xét ΔMAB và ΔMCD có 

\(\widehat{MAB}=\widehat{MCD}\)

AB=CD

\(\widehat{MBA}=\widehat{MDC}\)

Do đó: ΔMAB=ΔMCD

b: Xét ΔOMB và ΔOMD có

OM chung

MB=MD

OB=OD

Do đó: ΔOMB=ΔOMD

Suy ra: \(\widehat{BOM}=\widehat{DOM}\)

hay OM là tia phân giác của góc xOy

c: Ta có: ΔOBD cân tại O

mà ON là đường phân giác

nên ON là đường cao

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

27 tháng 12 2019

Câu hỏi của Song Ngư - Toán lớp 7 - Học toán với OnlineMath

22 tháng 12 2015

\(clgt\)

7 tháng 10 2017

i don,t know sorry