Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:
OC = OA ( gt)
^BOC = ^DOA
OB = OD
=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)
b) Có: OB = OD ; OA = OC ( gt)
=> OB - OA = OD - OC
=> AB = CD ( 2)
Từ (1) => ^OBC = ^ODA => ^ABK = ^CDK ( 3)
Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)
Từ (2) ; (3) ; (4) => \(\Delta\)AKB = \(\Delta\)CKD => AK = CK
Xét \(\Delta\)OAK và \(\Delta\)OCK có:
OA = OC
^OAK = ^OCK
AK = CK
=> \(\Delta\)OAK = \(\Delta\)OCK
=> ^AOK = ^COK
=> OK là phân giác của ^xOy.
a) Đầu tiên bạn xét tam giác OBD và tam giác OCA = nhau theo trường hợp c.g.c xog suy ra 2 cạnh tương ứng
b) chứng minh AB=DC theo cách cộng đoạn thẳng
chứng minh góc BAE = góc EDC theo cách tổng 3 góc trong 1 tam giác (đầu tiên đưa ra tam giác OBD và tam giác OCA = nhau theo chứng minh trên từ đó suy ra góc B= góc C, sau đó có góc AEB= góc DEC vì đối đỉnh, mà cộng tổng 3 góc trong 1 tam giác luôn =180 độ nên góc BAE = góc EDC)
từ đó xét tam giác ABE=tam giác DCE theo trường hợp g.c.g
a) Xét tg OBC và tg ODA
góc O chung
OB= OD ( giả thiết) (*)
OC= OA (giả thiết)
=> tg OBC= tg ODA ( C-G-C)
Suy ra : AD= BC (1)
góc ABE= góc EDC (2)
góc OCB= góc OAD (3)
b) Xét tg EAB và tg ECD: góc ABE= góc EDC ( do 2) (4)
góc BAE= góc ECD [kề bù với 2 góc OCB và OAD do (3) ] (5)
Mặt khác: A nằm giữa O, B ( OA<OB) => AB= OB - OA
C nằm giữa O, D ( OC<OD) => CD= OD - OC
Mà do (*) => AB= CD (6)
Từ (4), (5) và (6) suy ra: tg AEB= tg CED (G-C-G)
c) tg AEB= tg CED => AE= CE
mà OA= OC
OE chung của 2 tam giác
Suy ra tg OAE= tg OCE (C-C-C) (**) => góc AOE = góc COA
Do AD cắt BC(giả thiết) tại E nằm trong góc xOy => Tia OE nằm giữa 2 tia OB, OD (***)
Từ (**) và (***) suy ra: OE là tia phân giác của góc xOy.
Hết. Chúc bạn học tốt
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: \(\widehat{MBA}=\widehat{MDC}\)
Xét ΔCDB và ΔABD có
DC=AB
\(\widehat{CDB}=\widehat{ABD}\)
DB chung
Do đó: ΔCDB=ΔABD
Suy ra: \(\widehat{MAB}=\widehat{MCD}\)
Xét ΔMAB và ΔMCD có
\(\widehat{MAB}=\widehat{MCD}\)
AB=CD
\(\widehat{MBA}=\widehat{MDC}\)
Do đó: ΔMAB=ΔMCD
b: Xét ΔOMB và ΔOMD có
OM chung
MB=MD
OB=OD
Do đó: ΔOMB=ΔOMD
Suy ra: \(\widehat{BOM}=\widehat{DOM}\)
hay OM là tia phân giác của góc xOy
c: Ta có: ΔOBD cân tại O
mà ON là đường phân giác
nên ON là đường cao
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Câu hỏi của Song Ngư - Toán lớp 7 - Học toán với OnlineMath