K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

a) \(\Delta AKO\)và \(\Delta BKO\)có:

          OA = OB (theo GT)

          \(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))

         OK: cạnh chung

    Do đó: \(\Delta AKO=\Delta BKO\)(c.g.c)

   Suy ra: AK = KB (cặp cạnh tương ứng)

b) Ta có: \(\widehat{AKO}+\widehat{BKO}=180^o\)(vì là hai góc kề bù)

            Mà \(\widehat{AKO}=\widehat{BKO}\)(do \(\Delta AKO=\Delta BKO\))

   Do đó: \(\widehat{AKO}=\frac{180^o}{2}=90^o\)

  Suy ra: \(OK\perp AB\)

c) \(\Delta HOK\)và \(\Delta IOK\)có:

        \(\widehat{KHO}=\widehat{KIO}=90^o\)(do ​\(KH\perp Ox,KI\perp Oy\))

        OK: cạnh chung

       ​\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))

     Do đó: \(\Delta HOK=\Delta IOK\)(cạnh huyền, góc nhọn)

    Suy ra \(\widehat{HKO}=\widehat{IKO}\)(cặp góc tương úng)

     Mà tia KO nằm giữa hai tia KH và KI

    Nên KO là tia phân giác của \(\widehat{HKI}\)

        

 
22 tháng 11 2021

Vẽ Hình Cho Em Nx Ạ 
 

 

a: ΔOAB cân tại O

mà OK là đường phân giác

nên K là trung điểm của AB

=>KA=KB

b: ΔOAB cân tại O

mà OK là đường trung tuyến

nên OK vuông góc AB

a: ΔOAB cân tại O

mà OK là phân giác

nên K là trung điểm của AB

=>KA=KB

b: ΔOAB cân tại O

mà OK là phân giác

nên OK vuông góc AB

16 tháng 10 2016

Xét tam giác AOC và tam giác BOC có:

AO = BO (gt)

AOC = BOC (OC là tia phân giác của AOB)

OC là cạnh chung

=> Tam giác AOC = Tam giác BOC (c.g.c)

OA = OB (gt)

=> Tam giác OAB cân tại O

mà OI là tia phân giác của AOB

=> OI là đường trung trực của tam giác OAB

=> I là trung điểm của AB

     OI _I_ AB

16 tháng 10 2016

Ta có hình vẽ:

x O y z A B C I

Vì Oz là phân giác của xOy nên \(xOz=zOy=\frac{xOy}{2}\)

Xét Δ AOC và Δ BOC có:

OA = OB (gt)

góc AOC = góc BOC (chứng minh trên)

OC là cạnh chung

Do đó, Δ AOC = Δ BOC (c.g.c) (đpcm)

Vì Δ AOC = Δ BOC nên AC = BC (2 cạnh tương ứng)

góc ACO = góc BCO (2 góc tương ứng)

Xét Δ AIC và Δ BIC có:

AC = BC (chứng minh trên)

góc ACI = BCI (chứng minh trên)

CI là cạnh chung

Do đó, Δ AIC = Δ BIC (c.g.c)

=> AI = IB (2 cạnh tương ứng)

=> I là trung điểm của đoạn AB (đpcm)

Vì Δ AIC = Δ BIC nên góc AIC = BIC (2 góc tương ứng)

Lại có: AIC + BIC = 180o (kề bù)

Do đó, góc AIC = góc BIC = 90o

=> \(AB\perp OC\left(đpcm\right)\)