Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆AOH và ∆BOH có:=(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
=(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
= ( góc tương ứng).
Đề bài hơi sai, mình sửa lại: Cho góc xOy khác góc bẹt, nhé
Ta có hình vẽ:
a/ Xét tam giác OAH và tam giác OBH có
OH: cạnh chung
\(\widehat{AOH}\)=\(\widehat{BOH}\) (GT)
\(\widehat{AHO}\)=\(\widehat{BHO}\) = 900 (GT)
Vậy tam giác OAH = tam giác OBH (g.c.g)
=> OA = OB (2 cạnh tương ứng)
b/ Xét tam giác OAC và tam giác OBC có:
OC: cạnh chung
OA = OB (câu a)
\(\widehat{COA}\)= \(\widehat{COB}\) (GT)
Vậy tam giác OAC = tam giác OBC (c.g.c)
=> CA = CB (2 cạnh tương ứng)
=> \(\widehat{OAC}\) = \(\widehat{OBC}\) (2 góc tương ứng) (đpcm)
A B C H O x y t 1 2
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
a) ∆AOH và ∆BOH có:ˆAOHAOH^=ˆBOHBOH^(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
ˆOACOAC^=ˆOABOAB^(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
ˆOACOAC^= ˆOBCOBC^( góc tương ứng).
Xem thêm tại: http://loigiaihay.com/bai-35-trang-123-sach-giao-khoa-toan-7-tap-1-c42a5064.html#ixzz48jIcx
a) Xét ΔAOH∆AOH và ΔBOH∆BOH có:
+) ˆAOH=ˆBOHAOH^=BOH^ (vì OtOt là phân giác)
+) OHOH là cạnh chung
+) ˆAHO=ˆBHO(=900)AHO^=BHO^(=900)
Suy ra ΔAOH=ΔBOH∆AOH=∆BOH ( g.c.g)
Suy ra OA=OBOA=OB (hai cạnh tương ứng).
b) Xét ΔAOC∆AOC và ΔBOC∆BOC có:
+) OA=OBOA=OB (cmt)
+) ˆAOC=ˆBOCAOC^=BOC^ (gt)
+) OCOC cạnh chung.
Suy ra ΔAOC=ΔBOC∆AOC=∆BOC (c.g.c)
Suy ra: CA=CBCA=CB ( hai cạnh tương ứng)
ˆOAC=ˆOBCOAC^=OBC^ ( hai góc tương ứng).
Bạn tự vẽ hình nhé
a) xét tam giác AOH và tam giác BOH có :
OH là cạnh chung
góc AOH = góc BOH (OT là tia phân giác của góc O)
góc AHO =góc BHO (=90 độ )
suy ra : tam giác AOH = tam giác BOH (g.c.g)
suy ra : OA =OB (hai cạnh tương ứng )
b) xét tam giác AOC và tam giác BOC có
OC là cạnh chung
OA=OB (theo câu a)
góc AOC =góc BOC (OT là tia phân giác của góc O)
suy ra : tam giác AOC=tam giác BOC ( c.g.c)
suy ra : CA = CB ( hai cạnh tương ứng )
suy ra : góc OAC =góc OBC (hai cạnh tương ứng )
vậy .....bạn tự kết luận nhé
a)
xét ΔAHOΔAHO và ΔBHOΔBHO có:
OH(chung)
AHOˆ=BHOˆ=90oAHO^=BHO^=90o
O1ˆ=O2ˆ(gt)O1^=O2^(gt)
⇒ΔAHO=ΔBHO(g.c.g)⇒ΔAHO=ΔBHO(g.c.g)
=> OA=OB
b)
xét ΔACOΔACO và ΔBCOΔBCO có:
OA=OB(theo câu a)
O1ˆ=O2ˆO1^=O2^(gt)
OC(chung)
=>ΔACO=ΔABO(c.g.c)ΔACO=ΔABO(c.g.c)
=>{OACˆ=OBCˆCA=CB
a)
xét ΔAHOΔAHO và ΔBHOΔBHO có:
OH(chung)
AHOˆ=BHOˆ=90oAHO^=BHO^=90o
O1ˆ=O2ˆ(gt)O1^=O2^(gt)
⇒ΔAHO=ΔBHO(g.c.g)⇒ΔAHO=ΔBHO(g.c.g)
=> OA=OB
b)
xét ΔACOΔACO và ΔBCOΔBCO có:
OA=OB(theo câu a)
O1ˆ=O2ˆO1^=O2^(gt)
OC(chung)
=>ΔACO=ΔABO(c.g.c)ΔACO=ΔABO(c.g.c)
=>{OACˆ=OBCˆCA=CB
a) Xét tam giác AOH và BOH có:
AOH=BOH( vì OH là tia phân giác của AOB)
AH là cạnh chung
AHO=BHO=900
=>tam giác AOH=BOH(G.C.G)
=>OA=OB(2 cạn tương ứng)
b) Xét tam giác OAC và OBC có:
OA=OB( c/m a)
góc AOC= góc BOC( vì OC là tia phân giác của góc AOB)
OC là cạnh chung
=>tam giác OAC=OBC( c.g.c)
=>CA=CB( 2 cạnh tương ứng)