Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M là trung điểm của AB
=> OM là đường trung tuyến của tam giác OAB vuông tại O
\(\Rightarrow OM=\frac{1}{2}AB\)
N là trung điểm của FE
=> ON là đường trung tuyến của tam giác OEF vuông tại O
\(\Rightarrow ON=\frac{1}{2}\text{EF}\)
Xét tam giác FOE và tam giác AOB có:
FO = AO (gt)
FOE = AOB (= 900)
OE = OB (gt)
=> Tam giác FOE = Tam giác AOB (c.g.c)
=> FE = AB (2 cạnh tương ứng)
mà \(OM=\frac{1}{2}AB\) (chứng minh trên)
\(ON=\frac{1}{2}FE\) (chứng minh trên)
\(\Rightarrow OM=ON=\frac{1}{2}AB\)
b: Ta có: ΔOBA vuông tại O
mà OM là đường trung tuyến
nên OM=1/2AB(1)
Ta có: ΔOEF vuông tại O
mà ON là đường trung tuyến
nên ON=1/2EF(2)
Xét ΔBOA vuông tại O và ΔEOF vuông tại O có
OB=OE
OA=OF
Do đó: ΔBOA=ΔEOF
Suy ra: BA=EF(3)
Từ (1), (2) và (3) suy ra OM=ON=1/2AB
1/
Xét tam giác OAM và tam giác OBM,ta có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
2/
Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH,ta có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2) => MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
3/
Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H
Ta có: OA2 = OH2 + AH2 ( định lí Py-ta-go)
=> 52 = OH2 + 32
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
=> OH = \(\sqrt{16}\)
=> OH = 4 cm
OG=10/3