Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\sin x=a; \cos x=b(a>b)$
Ta có: $a^3-b^3=\frac{\sqrt{2}}{2}\Rightarrow (a^3-b^3)^2=\frac{1}{2}$
$\Leftrightarrow a^6+b^6-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow (a^2+b^2)(a^4-a^2b^2+b^4)-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow a^4-a^2b^2+b^4-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow (a^2+b^2)^2-3a^2b^2-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow 3a^2b^2+2a^3b^3=\frac{1}{2}$
Đặt $ab=t$ thì $6t^2+4t^3-1=0$
$\Leftrightarrow 2t^2(2t+1)+(2t-1)(2t+1)=0$
$\Leftrightarrow (2t+1)(2t^2+2t-1)=0$
$\Rightarrow t=\frac{-1}{2}; t=\frac{-1\pm \sqrt{3}}{2}$
Nếu $t=ab=\frac{-1}{2}$:
$1=a^2+b^2=(a+b)^2-2ab\Rightarrow (a+b)^2=2ab+1=0\Rightarrow a=-b$
$\Rightarrow \tan x=\frac{a}{b}=-1$
$\Rightarrow \tan (x+\frac{\pi}{4})=\frac{\tan x+1}{1-\tan x}=0$
Nếu $t=ab=\frac{-1-\sqrt{3}}{2}\Rightarrow (a+b)^2=a^2+b^2+2ab=1+(-1-\sqrt{3})< 0$ (vô lý- loại)
Nếu $t=ab=\frac{-1+\sqrt{3}}{2}$
$a^3-b^3=\frac{\sqrt{2}}{2}\Leftrightarrow (a-b)(a^2+b^2+ab)=\frac{\sqrt{2}}{2}$
$\Leftrightarrow (a-b)(1+ab)=\frac{\sqrt{2}}{2}$
$\Rightarrow a-b=\frac{\sqrt{2}}{2}:(1+ab)=\frac{\sqrt{6}-\sqrt{2}}{2}$
Áp dụng định lý Vi-et đảo, $a,-b$ là nghiệm của PT:
$X^2-\frac{\sqrt{6}-\sqrt{2}}{2}X+\frac{1-\sqrt{3}}{2}=0$
Đến đây giải ra tìm $a,-b\Rightarrow a,b$
$\Rightarrow \tan x=\frac{a}{b}$. Từ đó thế vào tìm $\tan (x+\frac{\pi}{4})$
Câu 2:
\(A=2\cdot\dfrac{1}{2}+3\cdot\dfrac{1}{2}+1=1+1+1=3\)
Bài 3:
\(cos^2a=1-\left(\dfrac{12}{13}\right)^2=\dfrac{25}{169}\)
mà cosa>0
nên cosa=5/13
=>tan a=12/5; cot a=5/12
Câu 4: \(sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)
mà sina <0
nên sin a=-căn 3/2
=>tan a=-căn 3
\(A=-\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\cdot\left(-\sqrt{3}\right)=-\sqrt{3}\)
\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)
\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)
\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)
\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)
\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)
Cho biết \(cosx=-\dfrac{1}{2}\)
\(sin^2x+cos^2x=1\Rightarrow sin^2x=1-cos^2x\)
\(\Rightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\)
\(S=4sin^2x+8tan^2x\)
\(\Rightarrow S=4\left(sin^2x+2\dfrac{sin^2x}{cos^2x}\right)\)
\(\Rightarrow S=4\left(\dfrac{3}{4}+2\dfrac{\dfrac{3}{4}}{\dfrac{1}{4}}\right)\)
\(\Rightarrow S=4\left(\dfrac{3}{4}+6\right)\)
\(\Rightarrow S=4.\dfrac{27}{4}=27\)