Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x y z O C H K
a, xét tam giác OCH và tam giác OCK có : OC chung
góc HOC = góc KOC do OC là phân giác của góc KOH (gT)
góc OHC = góc CKO = 90
=> tam giác OCK =tam giác OCH (ch-gn)
b, tam giác OCK =tam giác OCH (câu a)
=> CH = CK (đn)
xét tam giác HCB và tam giác KCA : có góc HCB = góc KCA (đối đỉnh)
góc BHC = góc AKC = 90
=> tam giác HCB = tam giác KCA (cgv-gnk)
=> HB = KA (đn)
c,CK = CH (Câu b)
=> tam giác CHK cân tại C (đn)
=> góc KHC = (180 - góc HCK) : 2 (tc) (1)
tam giác HCB = tam giác KCA (câu b) => CB = CA (đn)
=> tam giác CBA cân tại C (đn) => góc CAB (180 - góc BCA) : 2 (tc) (2)
góc HCK = góc BCA (đối đỉnh) (3)
(1)(2)(3) => góc KHC = góc CAB mà 2 góc này so le trong
=> HK // AB (tc)
d, có OH = OK do tam giác OCH = tam giác OCK (câu a)
HB = KA do tam giác HC = tam giác KCA (câu b)
OH + HB = OB
OK + KA = OA
=> OA = OB
=> tam giác OAB cân tại O (đn)
để OA = AB
<=> tam giác OAB đều (tc)
<=> góc xOy = 60
e, không biết làm em mới lớp 6
a, Xét △OAM vuông tại A và △OBM vuông tại B
Có: AOM = BOM (gt)
OM là cạnh chung
=> △OAM = △OBM (ch-gn)
=> AM = BM (2 cạnh tương ứng)
và OA = OB (2 cạnh tương ứng)
=> △OAB cân tại O
b, Xét △MAD vuông tại A và △MBE vuông tại B
Có: AM = MB (cmt)
AMD = BME (2 góc đối đỉnh)
=> △MAD = △MBE (cgv-gnk)
=> MD = ME (2 cạnh tương ứng)
c, Gọi OM ∩ DE = { I }
Ta có: OA + AD = OD và OB + BE = OE
Mà OA = OB (cmt) , AD = BE (△MAD = △MBE)
=> OD = OE
Xét △IOD và △IOE
Có: OD = OE (cmt)
DOI = EOI (gt)
OI là cạnh chung
=> △IOD = △IOE (c.g.c)
=> OID = OIE (2 góc tương ứng)
Mà OID + OIE = 180o (2 góc kề bù)
=> OID = OIE = 180o : 2 = 90o
=> OI ⊥ DE
Mà OM ∩ DE = { I }
=> OM ⊥ DE
a) xet tam giac OAH va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)
b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)
c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong goc AB
C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)
goc OHB= goc OHA( tam giac OHA= tam giac OHB )
--> goc OHB+goc OHB=180
-> 2 gpc OHB=180
->goc OHB=180:2=90
-> OH vuong goc AH tai H hay OC vuong goc AB
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC