Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B đối xứng với A qua tia 0X. Chọn H làm giao điểm của AB với 0X. Theo tính chất đường tròn.
Ta có: AB vông góc với tia 0X. H là trung điểm của AB.
Suy ra:
AH=HB
0A=0B (1)
C đối xứng với A qua tia 0Y. Chọn K làm giao điểm của AC với 0Y. Theo tính chất đường tròn.
Ta có: AC vông góc với tia 0Y. K là trung điểm của AC.
Suy ra:
AK=KC
0A=0C (2)
Từ (1) và (2), ta có:
0A=0B=0C.
Vậy kết luận 0B=0C.
Vì A đối xứng qua OX nên góc X0A= góc X0B.(3)
Vì A đối xứng qua OY nên góc Y0A= góc Y0C.(4)
Mà góc X0A+A0Y=X0Y.
Theo (3) và (4), ta có:
B0C=2X0A+2A0Y. Hoặc B0C=2XOY.
a; ta có: A và B đối xứng nhau qua Ox
nên OA=OB(1)
Ta có: A và C đối xứng nhau qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
b: Để B,O,C thẳng hàng thì góc BOC=180 độ
=>góc xOa+góc yOA=180/2=90 độ
hay góc xOy=90 độ
a: Ta có: B đối xứng với A qua Ox
nên OA=OB(1)
Ta có: C đối xứng với A qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
Bài giải:
a) Ox là đường trung trực của AB nên OA = OB.
Oy là đường trung trực của AC nên OA = OC.
Suy ra OB = OC.
b) ∆AOB cân tại O (vì OA = OB).
Suy ra ˆO1O1^= ˆO2O2^= 12ˆAOB12AOB^
∆AOC cân tại O (vì OA = OC)
Suy ra ˆO3O3^= ˆO4O4^= 12ˆAOC12AOC^
Do đó ˆAOBAOB^ +ˆAOCAOC^ = 2(ˆO1O1^+ˆO3O3^)
= 2ˆxOyxOy^
= 2.500
=1000
Vậy ˆBOCBOC^ = 1000