K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Xét ∆OAD và ∆OBC ta có:

OC = OD (gt)

∠COB = ∠AOD

OA = OB (gt)

⇒ ∆OAD = ∆OBC (c.g.c)

Do đó: AD = BC

Vì AC = OC - OA ; BD = OD - OB

Nên AC = BD (∆OAD = ∆OBC)

 Xét ∆ACD và ∆DBC ta có:

AD = BC

AC = BD

CD là cạnh chung

⇒ ∆ACD = ∆DBC (c.c.c)

Do đó: ∠CAD = ∠CBD

27 tháng 5 2016

a; Xét 2 tam giác AOD và COB có

OA=OC(gt)

OB=OD(gt)

góc O chung

\(\Rightarrow\Delta AOD=\Delta OCD\)(c.g.c)

\(\Rightarrow\)AD=CB(2 cạnh tương ứng)

b; vì OB=OD mà OA=OC \(\Rightarrow\)AB=CD

Xét 2 tam giác ABD và CDB có

AB=CD

AD=CB

DB là cạnh chung

\(\Rightarrow\)\(\Delta ABD=\Delta CDB\)(c.c.c)

c; tự làm dễ rồi

8 tháng 12 2016

Ta có hình vẽ:

x O y A B C D

a/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

\(\widehat{O}\): góc chung

OC = OD (GT)

Vậy tam giác OAD = tam giác OBC (c.g.c)

b/ Ta có: tam giác OAD = tam giác OBC (câu a)

=> \(\widehat{OAD}\)=\(\widehat{OBC}\) (2 góc tương ứng)

\(\widehat{OAD}\)+\(\widehat{DAC}\) = 1800 (kề bù)

\(\widehat{OBC}\)+\(\widehat{CBD}\) = 1800 (kề bù)

=> \(\widehat{CAD}\)=\(\widehat{CBD}\)(đpcm)

8 tháng 12 2017

cảm ơn bn nha

16 tháng 12 2018

Phần b thêm là chứng minh OE là tia phân giác của gíc Xoy nhé mình nhầm

16 tháng 12 2018

"Non sông Việt Nam có trở nên vẻ vang hay không, dân tộc Việt Nam có được vẻ vang sánh vai các cường quốc năm châu hay không chính là nhờ một phần lớn ở công học tập của các cháu".

Sinh thời, Chủ tịch Hồ Chí Minh luôn dành nhiều tình cảm và kỳ vọng lớn lao vào thế hệ trẻ của nước nhà. Trong thư gửi cho học sinh nhân ngày khai trường mùa Thu năm 1945, Người đã căn dặn các thế hệ học sinh như vậy.

Năm 1956, Đại hội Thành lập Hội Liên hiệp Thanh niên Việt Nam diễn ra tại thủ đô Hà Nội đã vinh dự được đón Chủ tịch Hồ Chí Minh. Tại Đại hội, Người đã căn dặn toàn thể thanh niên nước nhà: Đoàn kết phấn đấu, vui vẻ, mạnh dạn, tiến bộ là gì? Là để mà giúp sức vào xây dựng một nước Việt Nam Hòa bình, thống nhất, độc lập, dân chủ và giàu mạnh”.

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

29 tháng 4 2018