Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ thêm tia OE hộ tớ với
c) VÌ \(\Delta AEC=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AE=EB\)
XÉT \(\Delta OEB\)VÀ\(\Delta OEA\)CÓ
\(OB=OA\left(GT\right)\)
\(\widehat{B_1}=\widehat{A_1}\left(CMT\right)\)
\(AE=EB\left(CMT\right)\)
=>\(\Delta OEB\)=\(\Delta OEA\)(C-G-C)
=>\(\widehat{BOE}=\widehat{AEO}\)
=> OE LÀ TIA PHÂN GIÁC CỦA \(\widehat{xOy}\)
a) Ta có: OD = OB + BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180
OBC+EBD=180
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
Không pt đúng ko
Hình vẽ trên òn đây là bài làm:
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
\(\widehat{O}\) góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> \(\widehat{D}=\widehat{C}\) và \(\widehat{A_1}=\widehat{B_1}\) (2 góc tương ứng)
Mà \(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}\)= 1800 (kề bù)
=> \(\widehat{A_2}=\widehat{B_2}\)
Δ EAC và Δ EBD có:
\(\widehat{C}=\widehat{D}\) (cmt)
AC=BD (gt)
\(\widehat{A_2}=\widehat{B_2}\) (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
\(\widehat{B_1}=\widehat{A_1}\) (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc tương ứng)
Vậy OE là phân giác \(\widehat{xOy}\).
Hình tự vẽ nha
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
\(\Rightarrow\widehat{OCB}=\widehat{ODA},\widehat{OBC}=\widehat{OAD}\)( cặp góc tượng ứng)
Có:\(\widehat{OAD}+\widehat{DAC}=180^o\)
\(\widehat{OBC}+\widehat{CBD}=180^o\)
Mà:\(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)
\(\Rightarrow\widehat{DAC}=\widehat{CBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)
AC=BD(gt)
\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
\(\Rightarrow\widehat{EOC}=\widehat{EOD}\)
=> OE là tia pg của \(\widehat{xOy}\)
O x y A B C D E
a, Ta có : OD = OB + BD
OC = OA + AC
Mà OA = OB ( gt ) và AC = BD ( gt )
=> OC = OD
Xét tam giác OAD và tam giác OBC
^O chung
OC = OD ( cmt )
OA = OB ( gt )
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC ( 2 cạnh tương ứng )
Vì OAD = OBC ( cmt )
=> ^D = ^C và ^A = ^B ( 2 góc tương ứng )
Mà ^OAD + ^CAD = ^OBC + ^DBC = 1800 ( kề bù )
=> ^DBC = ^CAD
Xét tam giác EAC và tam giác EBD ta có :
^C = ^D ( cmt )
AC = BD ( gt )
^DBC = ^CAD ( cmt )
=> tam giác EAC = tam giác EBD ( g.c.g )