K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
16 tháng 2 2016

a)xét tam giác vuông KOA và KOB có :góc KAO=góc KBO=90

OK chung

góc AOK=góc BOK

=>tam giác KAO=tam giác KBO=>KA=KB

b)xét tam giác KAD và KBE có :góc KAD=góc KBE

KA=KD

góc AKD=góc BKE

=>tam giác KAD=tam giác KBE =>KD=KE

c)có OA=OE(=OA+AD=OB+BE)=>tam giác ODE cân tại O có OK là đường phân giác=>ok đồng thời là đường cao=>OK vuông góc với DE

a: Xét ΔOAK vuông tại A và ΔOBK vuông tạiB có

OK chung

\(\widehat{AOK}=\widehat{BOK}\)

Do đó: ΔOAK=ΔOBK

Suy ra: KA=KB

b: Ta có: ΔOAK=ΔOBK

nên OA=OB

hay ΔOAB cân tại O

9 tháng 1 2022

 Xét tứ giác BMOA:

+ BM // OA (b // Oy).

+ AM // OB (a // Ox).

\(\Rightarrow\) Tứ giác BMOA là hình bình hành (dhnb).

\(\Rightarrow\widehat{AMB}=\widehat{BOA}\) (Tính chất hình bình hành).

hay \(\Rightarrow\widehat{AMB}=\widehat{xOy.}\)

a) Xét tam giác AKO và tam giác BKO, ta có:

Góc KAO=Góc KBO(KA vuông góc với Ox;KB vuông góc với Oy)

OK là cạnh chung

Góc AOK=Góc BOK(OK là tia phân giác góc xOy)

Suy ra: tam giác AKO=tam giác BKO

Suy ra: KA=KB(yttư)(đpcm)

      và  OA=OB(yttư)

b) Suy ra : tam giác OAB là tam giác cân

c) Xét tam giác AKD và tam giác BKE, ta có:

Góc KAD=Góc KBE(KA vuông góc Ox;KB vuông góc Oy)

Góc AKD=Góc BKE(2 góc đối đỉnh)

KA=KB(theo câu a)

Suy ra : tam giác AKD=tam giác BKE(g.c.g)

Suy ra: KD=KE(yttư)(đpcm)

d) Ta có : tam gíac AKD=tam giác BKE(theo câu c)

Suy ra:AD=BE(yttư)

Mà OA=OB(theo câu a)

Suy ra:OA+AD=OD=OB+BE=OE

Gọi H là giao điểm của DE và OK

Xét tam giác HOD và tam giác HOE, ta có:

OD=OE(cmt)

Góc DOH= Góc EOH(OH là tia phân giác góc DOE)

OH là cạnh chung

Suy ra:tam giác HOD=tam giác HOE(c.g.c)

Suy ra: Góc DHO=Góc EHO(yttư)

Mà đây là 2 góc kề bù

Suy ra: Góc DHO=Góc EHO=180:2=90 độ

Suy ra :OH vuông góc DE

Mà O;H;K thẳng hàng

Suy ra: OK  vuông góc với DE(đpcm)

9 tháng 2 2020

x y z O C H K

a, xét tam giác OCH và tam giác OCK có : OC chung

góc HOC = góc KOC  do OC là phân giác của góc KOH (gT)

góc OHC = góc CKO = 90

=> tam giác OCK =tam giác OCH (ch-gn)

b,  tam giác OCK =tam giác OCH  (câu a)

=> CH = CK (đn)

xét tam giác HCB và tam giác KCA : có góc HCB = góc KCA (đối đỉnh)

góc BHC = góc AKC = 90 

=> tam giác HCB = tam giác KCA (cgv-gnk)

=> HB = KA (đn)

c,CK = CH (Câu b)

=> tam giác CHK cân tại C (đn)

=> góc KHC = (180 -  góc HCK) : 2 (tc)          (1)

tam giác HCB = tam giác KCA (câu b) => CB = CA (đn)

=> tam giác CBA cân tại C (đn) => góc CAB (180 - góc BCA) : 2 (tc)        (2)

góc HCK = góc BCA (đối đỉnh)       (3)

(1)(2)(3) => góc KHC = góc CAB  mà 2 góc này so le trong

=> HK // AB (tc)

d,   có OH = OK do tam giác OCH = tam giác OCK (câu a) 

HB = KA do tam giác HC = tam giác KCA (câu b)

OH + HB = OB

OK + KA = OA 

=> OA = OB 

=> tam giác OAB cân tại O (đn) 

để OA = AB 

<=> tam giác OAB đều  (tc)

<=> góc xOy = 60

e, không biết làm  em mới lớp 6

9 tháng 2 2020

Ko sao đâu. Lớp 6 mà làm được như vậy là giỏi rồi em 

19 tháng 3 2018

a) Xét tam giác vuông AOM và tam giác vuông BƠM có:

Cạnh huyền AM chung

\(\widehat{AOM}=\widehat{BOM}\) (gt)

\(\Rightarrow\Delta AOM=\Delta BOM\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow MA=MB;OA=AB\)hay tam giác OAB cân tại O.

b) Xét tam giác vuông AMD và tam giác vuông BME có:

AM = BM

\(\widehat{AMD}=\widehat{BME}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMD=\Delta BME\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow MD=ME\)

c) Ta thấy OA = OB; AD = BE nên OD = OE

Vậy thì \(\Delta ODI=\Delta OEI\left(c-g-c\right)\)

\(\Rightarrow\widehat{OID}=\widehat{OIE}\)

Chúng lại là hai góc kề bù nên \(\widehat{OID}=\widehat{OIE}=90^o\) hay MO vuông góc DE.

24 tháng 3 2020

c, cm : OM la trung truc cua DE . ai giup mik voii