Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thực hiện, như sau:
- Vẽ \(MP\perp Ox,\)rồi lấy trên tia MP điểm A sao cho PA = PM.
- Vẽ \(MQ\perp Oy,\)rồi lấy trên tia MQ điểm B sao cho QB = QM.
b. Ta có:
- Vì OP là trung trực của AM nên OM = OA.(1)
- Vì OQ là trung trực của BM nên OM = OB.(2)
Từ (1),(2) suy ra:
\(OA=OB\Leftrightarrow O\)thuộc đường trung trực của AB.
c. Nhận xét về các cặp tam giác vuông có chung một cạnh và một cạnh khác bằng nhau, ta có:
\(\Delta POA=\Delta POM\Rightarrow\widehat{O_1}=\widehat{O_2};\Delta QOB=\Delta QOM\Rightarrow\widehat{O_3}=\widehat{O_4}\)
Ta có:
\(\widehat{xOy}=\widehat{O_2}+\widehat{O_3}.\)
\(\widehat{AOB}=\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}=\left(\widehat{O_1}+\widehat{O_4}\right)+\left(\widehat{O_2}+\widehat{O_3}\right)\)
\(=\left(\widehat{O_2}+\widehat{O_3}\right)+\left(\widehat{O_2}+\widehat{O_3}\right)=2\left(\widehat{O_2}+\widehat{O_3}\right)=2\widehat{xOy}=2\alpha.\)
d. Nếu \(\widehat{xOy}=90^o\)thì:
\(\widehat{AOB}=2.90^o=180^o\Leftrightarrow A,O,B\)thẳng hàng <=> O là trung điểm của AB.
. . A B // // C _ _ O x y H K
a) Gọi giao điểm của Oy và AC là H, giao điểm của Ox và AB là K
Nối O với A
Xét \(\Delta OHC\)và\(\Delta OHA\)có:
\(\widehat{OHC}=\widehat{OHA}\)\(\left(=90^o\right)\)
\(OH\)là cạnh chung
\(HC=HA\)(H là trung điểm của AC)
\(\Rightarrow\Delta OHC=\Delta OHA\left(c.g.c\right)\)
\(\Rightarrow OC=OA\)(2 cạnh tương ứng) (1)
Xét \(\Delta OKA\)và \(\Delta OKB\)có:
\(\widehat{OKA}=\widehat{OKB}\left(90^o\right)\)
\(OK\)là cạnh chung
\(KA=KB\)(K là trung điểm của AB)
\(\Rightarrow\Delta OKA=\Delta OKB\left(c.g.c\right)\)
\(\Rightarrow OA=OB\)(2 cạnh tương ứng) (2)
Từ (1) và (2) \(\Rightarrow OC=OB\)
b) Vì \(\Delta OHC=\Delta OHA\)(Chứng minh trên)
\(\Rightarrow\widehat{COH}=\widehat{AOH}\)
\(\Rightarrow\)\(OH\)là tia phân giác \(\widehat{COA}\)
\(\Rightarrow\widehat{COA}=2\widehat{AOH}\)
Vì\(\Delta OKA=\Delta OKB\)(Chứng minh trên)
\(\Rightarrow\widehat{AOK}=\widehat{BOK}\)
\(\Rightarrow OH\)là tia phân giác \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}=2\widehat{AOK}\)
Ta có:\(\widehat{COA}+\widehat{AOB}=\widehat{BOC}\)
\(\Rightarrow2\widehat{AOH}+2\widehat{AOK}=\widehat{BOC}\)
\(\Rightarrow2\left(\widehat{AOH}+\widehat{AOK}\right)=\widehat{BOC}\)
\(\Rightarrow2.\widehat{HOK}=\widehat{BOC}\)
\(\Rightarrow2.60^o=\widehat{BOC}\)\(\left(\widehat{xOy}=\widehat{HOK}=60^o\right)\)
\(\Rightarrow\widehat{BOC}=120^o\)
a: Ox là trung trực của ME
=>OM=OE
=>ΔOME cân tại O
=>Ox là phân giác của góc MOE(1)
Oy là trung trực của MF
=>OM=OF
=>ΔOMF cân tại O
=>Oy là phân giác của góc MOF(2)
OM=OF
OM=OE
=>OF=OE
b: Từ (1), (2) suy ra góc EOF=2*(góc xOM+góc yOM)
=2*góc xOy
=2a
c: Khi a=90 độ thì góc EOF=2*90=180 độ
=>E,O,F thẳng hàng
mà OE=OF
nên O là trung điểm của EF