Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông AOM và tam giác vuông BƠM có:
Cạnh huyền AM chung
\(\widehat{AOM}=\widehat{BOM}\) (gt)
\(\Rightarrow\Delta AOM=\Delta BOM\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MA=MB;OA=AB\)hay tam giác OAB cân tại O.
b) Xét tam giác vuông AMD và tam giác vuông BME có:
AM = BM
\(\widehat{AMD}=\widehat{BME}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMD=\Delta BME\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow MD=ME\)
c) Ta thấy OA = OB; AD = BE nên OD = OE
Vậy thì \(\Delta ODI=\Delta OEI\left(c-g-c\right)\)
\(\Rightarrow\widehat{OID}=\widehat{OIE}\)
Chúng lại là hai góc kề bù nên \(\widehat{OID}=\widehat{OIE}=90^o\) hay MO vuông góc DE.
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC OAM = GÓC OBM=90*
OM CHUNG LÀ CẠNH HUYỀN CHUNG
MA=MB
=>TAM GIÂC OAM = TA GIÁC OBM (CH GN)
=>OA=OB
=>TAM GIÁC OAB CÂN TẠI A
B, XÉT TAM GIÁC MAD VÀ TAM GIÁC MBE CÓ
GÓC A=GÓC B =90*
GÓC M CHUNG
AD=BE
=>TAM GIÁC MAD=MBE
=>MD=ME
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC A=GÓC B=90*
OM LÀ CẠNH HUYỀN CHUNG
GÓC O CHUNG]
=>TAM GIÁC OAM = TAM GIÁC OMB(CH-GN)
=>OA=OM(CẠNH TƯƠNG ỨNG)
=> TAM GIÁC OAB CÂN TẠI O
B,XÉT TAM GIÁC ADM VÀ TAM GIÁC MBE CÓ
GÓC A = GÓC B=90*
GÓC AMD= GÓC EMB
GÓC M CHUNG
=>TAM GIÁC ADM = TA GIÁC MEB(GCG)
=>MD=ME(đpcm)
O x y M B A E D Z
Bài làm
a) Xét tam giác AOM và tam giác OBM có:
\(\widehat{OAM}=\widehat{OBM}=90^0\)
Cạnh huyền: OM chung
Góc nhọn: \(\widehat{MOA}=\widehat{MOB}\)( Vì OM là tia phân giác của góc xOy )
=> Tam giác AOM = tam giác OBM ( cạnh huyền - góc nhọn )
=> MA = MB ( hai cạnh tương ứng )
b) Vì tam giác OAM = tam giác OBM ( Theo câu a )
=> OA = OB ( hai cạnh tương ứng )
=> Tam giác OAB cân tại O
c) Xét tam giác EBM và tam giác DAM có:
\(\widehat{EBM}=\widehat{DAM}=90^0\)
BM = MA ( chứng minh trên )
\(\widehat{EMB}=\widehat{AMD}\)( hai góc đối đỉnh )
=> Tam giác EBM = tam giác DAM ( g.c.g )
=> ME = MD ( hai cạnh tương ứng )
d) Vì tam giác EBM = tam giác DAM ( theo câu d )
=> BE = AD ( hai cạnh tương ứng )
Ta có: OB + BE = OE
OA + AD = OD
Mà OA = OB ( tam giác OAB cân tại O )
BE = AD ( chứng minh trên )
=> OE = OB
Gọi gia điểm của Om và ED là Z
Xét tam giác OZE và tam giác OZD có:
OE = OB ( cmt )
\(\widehat{EOZ}=\widehat{ZOD}\)( OM là tia phân giác của góc xOy )
Cạnh OZ chung
=> Tam giác OZE = tam giác OZD ( c.g.c )
=> \(\widehat{OZE}=\widehat{OZD}\)( Hai góc tương ứng )
Ta có: \(\widehat{OZE}+\widehat{OZD}=180^0\)
Mà \(\widehat{OZE}=\widehat{OZD}\)
=> \(\widehat{OZE}=\widehat{OZD}=\frac{180^0}{2}=90^0\)
=> OZ vuông góc với ED
Hay OM vuông góc với ED ( đpcm )
# CHúc bạn học tốt #
a) Dễ dàng chứng minh được hai tam giác \(\Delta OAM=\Delta OBM\left(ch-gn\right)\)
Thật vậy có :
+) OM chung
+) \(\widehat{AOM}=\widehat{BOM}\)
Suy ra có hai cạnh tương ứng là MA = MB
b) Tam giác OAB là tam giác cân tại O vì có OA = OB \(\left(\Delta OAM=\Delta OBM\right)\)
c) Xét hai tam giác vuông \(OBD\)và \(OAE\)
+) OB = OA
+) Chung góc \(\widehat{AOB}\)
Vậy hai tam giác trên bằng nhau theo : \(\Delta OBD=\Delta OAE\)(cgv - gn kề cgv)
Suy ra OD = OE mà OA = OB nên OD - OA = OE - OB hay AD = BE
Và góc ODB = góc OEA (hai góc tương ứng)
Từ đó suy ra được hai tam giác DAM = tam giác EBM ( cgv - gn kề cgv)
+) AD = BE
+) góc ADM = góc BEM
Suy ra MD = ME ( hai cạnh tương ứng)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của trần thị thúy vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link dưới đây nhé.
Câu hỏi của trần thị thúy vân - Toán lớp 7 - Học toán với OnlineMath
bài 2 là tính góc adb nhé
Đề thi hsg năm ngoái lp 7 trường mik có :))
Góp ý thôi -.-
a) Xét tam giác vuông MOA và tam giác vuông MOB
có OM là cạnh chung
góc MOA=góc MOB (GT)
suy ra tam giác MOA = tam giác MOB (cạnh huyền-góc nhọn) (1)
suy ra MA=MB
b) từ (1) suy ra OA=OB suy ra tam giác OAB cân tại O (T/chất tam giác cân)
c) Chưa hết đề bài em nhé