Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự 7. Tính được:
a) a O m ^ = b O n ^ = 40°. b) m ' O n ^ = 50°
Bài 1
x x' y y' O ) 1 2 3 4 m n
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
A O B C D M
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
a) Ta có :
OC vuông góc với OA = 90°
Mà OB' là phân giác A'OC
=> A'OB' = 90/2 = 45°
Mà OA là tia đối OA' (gt)
=> AOB = A'OB' = 45°
b) Vì B'OD = 90°
Mà A'OB' = 45°(cmt)
=> A'OD = 45°
=> A'OD = A'OB' = 45°
=> OA' là phân giác B'OD
Cho tam giác ABC, tia phân giác trong AD , M là điểm bất kì thuộc đường thẳng BC. Qua M vẽ đường thẳng song song với AD cắt AB,AC lần lượt tại P,Q. Chứng minh rằng tam giác APQ có hai góc bằng nhau