Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
Ta có: \(f\left(1\right)=1^3-a.1^2-9.1+b\)
\(=1-a-9+b\)
\(=-8-a+b\)
Mà \(f\left(1\right)=0\Rightarrow-8-a+b=0\left(1\right)\)
Ta có: \(f\left(3\right)=3^3-a.3^2-9.3+b\)
\(=27-9a-27+b\)
\(=-9a+b\)
Mà \(f\left(3\right)=0\Rightarrow-9a+b=0\left(2\right)\)
Lấy \(\left(1\right)\)trừ \(\left(2\right)\)ta được :
\(\left(-8-a+b\right)-\left(-9a+b\right)=0\)
\(-8-a+b+9a-b=0\)
\(-8+8a=0\)
\(8a=8\)
\(a=1\)
Thay a =1 vào (1) ta được b= 9
Vậy a=1 và b=9