K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

=> f(2) = 22 + 2a+b = 4+3a+b=0

=> f(2) chia cho 2-1 dư 3

=> f(2) chia 1 dư 3

 Vô lí vì 0 chia hết cho mọi số

    Vậy không có a,b cần tìm

 

4 tháng 7 2015

\(f\left(2\right)=4+2a+b=0\text{ (1)}\)

\(f\left(x\right)=\left(x-1\right)\left(x-x_0\right)+3\)\(\Rightarrow f\left(1\right)=1^2+a+b=\left(1-1\right)\left(1-x_0\right)+3=3\)

\(\Rightarrow a+b=2\text{ (2)}\)

Từ (1) và (2) suy ra \(a=-6;b=8\)

 

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

5 tháng 5 2016

Ngihem cua f(x) = (x-1)(x+2) = 0    => x=1 hoac x=-2

Vi nghiem cua f(x) cung la nghiem cua g(x) nen:

Tai x=1 thi:   g(x)=13+a12+b1+2 = 0     => 1+a+b+2 = 0  => a+b=-3  => b = -3-a               (1)

Tai x=-2 thi: g(x) = (-2)3 + a(-2)2 + b(-2) + 2 =0  => -8 + 4a + b + 2 = 0  => 4a+b = 6 => b=6-4a          (2)

Tu (1) va (2) suy ra: -3-a = 6-4a   => 3a = 9 => a=3

Thay a=3 vao (1) ta dc: b=-3-3 = -6

Vay: a=3 ; b=-6 

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

12 tháng 5 2016

xét f(x)=0=> (x+1)(x-1)=0

   =>__x+1=0=>x=-1

      |__x-1=0=> x=1

vậy nghiêm của f(x) là ±1

12 tháng 5 2016

xét f(x)=0 => (x+1)(x-1)=0

=> __x+1=0=> x=-1

    |__x-1=0=> x=1

vậy nghiệm của f(x) là ±1

ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)

g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)

g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)

=>1+a-b=3+a+b

=>1-3-b-b=-a+a

=> -2-2b=0

=> -2b=2

=>b=2:(-2)=-1

thay b vào ta có:

\(g\left(1\right)=3+a+\left(-1\right)=0\)

=> 2+a=0

=> a=-2

Vậy a=-2 và b=-1

6 tháng 5 2018

ahihi

15 tháng 5 2018

Ta có: f(x)=(x+1).(x-1)=0

=> x+1=0=>x= -1   (chuyển vế đổi dấu)

x-1=0=>x=1

g(x)=x^3+ax^2+bc+2

g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0

<=> -1+a+b+2=0

=>a= -1-b

g(1)= 1^3+a.1^2+b.1+2=0

<=>1+a+b+2=0

=>3+a+b=0

=>b=-3

a=0 

Vậy a=0 ; b= -3