Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có \(f\left(-x\right)=\left|-x-2014\right|-\left|-x+2014\right|\)
Mà \(\left|-x-2014\right|\le\left|-x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)
\(\left|-x+2014\right|\le\left|-x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)
=>\(\left|-x-2014\right|-\left|-x+2014\right|\le\left(\left|-x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)
=> \(\left|-x-2014\right|-\left|-x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)
=> \(\left|-x-2014\right|-\left|-x+2014\right|\le0\)(1)
và \(f\left(x\right)=\left|x-2014\right|-\left|x+2014\right|\)
Mà \(\left|x-2014\right|\le\left|x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)
\(\left|x+2014\right|\le\left|x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)
=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(\left|x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)
=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)
=> \(\left|x-2014\right|-\left|x+2014\right|\le0\)(2)
Từ (1) và (2) => \(\left|-x-2014\right|-\left|-x+2014\right|=\left|x-2014\right|-\left|x+2014\right|\)
=> \(f\left(x\right)=f\left(-x\right)\)(đpcm)
b/ + Ta có \(\left|x-2014\right|\ge0\)với mọi giá trị của x
\(\left|x+2014\right|\ge0\)với mọi giá trị của x
=> \(\left|x-2014\right|-\left|x+2014\right|\ge0\)với mọi giá trị của x
=> GTNN của f (x) = 0.
và \(\left|x-2014\right|-\left|x+2014\right|\le0\)(cm câu a)
=> GTLN của f (x) = 0.
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
Cóp cái này zòi dựa zô đó màk làm =))
http://giasutoan.giasuthukhoa.edu.vn/cho-fx-la-da-thuc-bac-bon-thoa-man-f1-f-1-va-f2-f-2-chung-minh-rang-fx-f-x-voi-moi-x/
cố gắng lên