K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

a) Xét phương trình \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)

Ta có \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2a\ge0\) với mọi a

Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lĩ)

Vậy \(\Delta'>0\Rightarrow f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số có cực đại và cực tiểu

b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a;x_1x_2=-4\left(1+\cos2a\right)\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)\)

                                                 \(=9+8\cos^2a-6\sin a\cos a\)

                                  \(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2\)   

                                  \(=18-\left(3\sin a+\cos a\right)^2\le18\)          

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)

Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)

a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)

Thử lại: \(y'=2x^2-2x\)

\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$

Vậy $m=2$

b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)

\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)

\(\Leftrightarrow m=\frac{4}{3}\)

Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$

Vậy không tồn tại $m$ thỏa mãn.

c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.

Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt

Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)

d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$

Với ĐKXĐ như phần c, áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)

Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)

\(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)

Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)

Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$

10 tháng 5 2022

y'=3x2-2(m+2)x+1-m.

\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).

|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).

18 tháng 8 2020

\(y'=3x^2-6\left(m+1\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2m+2\end{matrix}\right.\)

\(y\left(0\right)=-m^3-1\)

TH1 \(2m+2>0\Leftrightarrow m>-1\)

\(\Leftrightarrow y\left(0\right)=-m^3-1< 0\Rightarrow y\left(2m+2\right)< 0\)

TH1 loại

TH2: \(2m+2< 0\Leftrightarrow m< -1\)

\(\Leftrightarrow y\left(0\right)=-m^3-1>0\Rightarrow y\left(2m+2\right)>0\)

\(\Leftrightarrow m^3< -1\Leftrightarrow m< -1\)

Vậy m<-1 thì phương trình có giá trị CĐ,CT>0

NV
20 tháng 4 2019

\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)

\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)

Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)

- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)

\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)

- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)

\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)

NV
18 tháng 10 2020

\(y'=x^2-2mx+m^2-1\)

Hàm có 2 cực trị khi và chỉ khi:

\(x^2-2mx+m^2-1=0\) có 2 nghiệm

\(\Leftrightarrow\Delta'=m^2-\left(m^2-1\right)>0\Leftrightarrow1>0\) (luôn thỏa mãn)

Khi đó, gọi \(x_1;x_2\) là hai cực trị, theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-7=0\)

\(\Leftrightarrow4m^2-3\left(m^2-1\right)-7=0\)

\(\Leftrightarrow m^2-4=0\Rightarrow m=\pm2\)