Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỀ bài em sai nhé
Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)
suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)
\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)
\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)
2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6
Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm
ahhii
Nếu x0 là nghiệm của f(x) thì a.x0+b=0 =>x0=-b/a
Để g(x)=0 thì bx+a=0
bx=-a
x=-a/b=1:(-b/a)=1/x0
=>Nghiệm của g(x) là 1/x0
Vậy nếu x0 là nghiệm của f(x) thì 1/x0 là nghiệm của g(x)
Ta có: \(f\left(x\right)=x^2-1\)
\(\Rightarrow f\left(1-x_0\right)=\left(1-x_0\right)^2-1\)
\(=x_0^2-2x_0+1-1=x_0^2-2x_0\)
\(=x_0\left(x_0-2\right)\)
\(f\left(1-x_0\right)< 0\Leftrightarrow\)\(x_0\left(x_0-2\right)< 0\)
Mà \(x_0>x_0-2\)nên \(\hept{\begin{cases}x_0>0\\x_0-2< 0\end{cases}}\Leftrightarrow0< x_0< 2\)
Vậy \(0< x_0< 2\)thì \(f\left(1-x_0\right)\)đạt giá trị âm
Với \(x_0\ne0:\)
Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)
Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)
f(x)=f(-x) thì: ax^2+bx+c=ax^2-bx+c do đó: 2bx=0
mà b khác 0 nên: x=0.