K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

Chỉ xác định được a; b với điều kiện a;b là số hữu tỉ, còn a; b là số thực thì có vô số giá trị thỏa mãn

Nếu a;b hữu tỉ:

\(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2018=2019\)

\(\Leftrightarrow\left(3+2\sqrt{2}\right)a+\left(1+\sqrt{2}\right)b=1\)

\(\Leftrightarrow3a+2\sqrt{2}a+b+b\sqrt{2}=1\)

\(\Leftrightarrow\left(2a+b\right)\sqrt{2}=1-3a-b\)

Do a; b hữu tỉ \(\Rightarrow\left(2a+b\right)\sqrt{2}\) vô tỉ; \(1-3a-b\) hữu tỉ

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2a+b=0\\1-3a-b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)

2 tháng 6 2017

\(f\left(x\right)=ax^2+bx+c=>\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(0\right)=c\\f\left(-1\right)=a-b+c\end{cases}.}\)

xét các Th

Th1)a,b,c cùng dấu :

=>/a/+/b/+/c/=/a+b+c/=/f(x)/<=1

Th2)a khác dấu với b,c

=>/a/+/b/+/c/=/-a+b+c/=/2f(0)-f(-1)/=2/f(0)/+/f(-1)/<=3

th3)b khác dấu với a,c

=>/a/+/b/+/c/=/a-b+c/=/f(-1)/<=1

th4) c khác dấu với a,b

=>/a/+/b/+/c/=/a+b-c/=/f(1)-2f(0)/=/f(1)/+2/f(0)/<=3

vậy /a/+/b/+/c/<=3

dấu = xảy ra khi ...

14 tháng 1 2020

f(x) = ax\(^2\)+bx + 2019

=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)

<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)

<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)

Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:

(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)

=> \(f\left(1-\sqrt{2}\right)=2020\)

6 tháng 8 2019

f(x) có nghiệm 

=> \(b^2\ge4c\)

\(f\left(2\right)=4+2b+c=\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+c+1+1+1+1\)

                                        \(\ge9\sqrt[9]{\frac{1}{16}b^4c}\ge9\sqrt[9]{\frac{1}{16}.\left(4c\right)^2.c}=9\sqrt[3]{c}\)(ĐPCM)

Dấu bằng xảy ra khi b=2,c=1