K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

\(x^3=3+\sqrt{17}+3-\sqrt{17}+3a.b\left(a+b\right)\) dài quá đặt a,b

a.b=-2

x^3=6-6(a+b)=6-6x

=>x^3+6x-5=6-5=1

KL: P(x)=12016 =1

22 tháng 12 2016

Tìm P(a) với a = ..... nhé

Nhầm đề tí!

4 tháng 7 2018

\(x=\dfrac{\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}.\left(\sqrt{5}+2\right)=\dfrac{\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}.\left(\sqrt{5}+2\right)=\dfrac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{3}=\dfrac{5-4}{3}=\dfrac{1}{3}\) Thay : \(x=\dfrac{1}{3}\) vào A , ta được :

\(A=\left(\dfrac{3}{27}+\dfrac{8}{9}-\dfrac{3}{3}+1\right)^{2012}=1^{2012}=1\)

Vậy ,...

30 tháng 6 2018

\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\dfrac{5-4}{\sqrt{5}+3-\sqrt{5}}=\dfrac{1}{3}\)A=\(\left(3\left(\dfrac{1}{3}\right)^3+8\left(\dfrac{1}{3}\right)^2+2\right)^{2009}-3^{2009}=3^{2009}-3^{2009}=0\)

17 tháng 12 2022

\(\text{Δ}=\left(m+3\right)^2-4m^2\)

\(=m^2+6m+9-4m^2=-3m^2+6m+9\)

\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)

Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0

=>-1<m<3

b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)

\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)

=>2|m|=5-m-3=2-m

TH1: m>=0

=>2m=2-m

=>3m=2

=>m=2/3(nhận)

TH2: m<0

=>-2m=2-m

=>-2m+m=2

=>m=-2(loại)

c: P(x1)=P(x2)

=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)

=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0

=>x=0 và a=0

=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)

NV
8 tháng 10 2020

\(a^3=6+3a\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\)

\(\Rightarrow a^3=6-6a\)

\(\Rightarrow a^3+6a-5=1\)

\(\Rightarrow f\left(a\right)=1^{2020}=1\)