Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=4^{10}+4^{11}+...+4^{199}\)
\(\Rightarrow M=\left(4^{10}+4^{11}\right)+...+\left(4^{198}+4^{199}\right)\)
\(\Rightarrow M=4^{10}\left(1+4\right)+...+4^{198}\left(1+4\right)\)
\(\Rightarrow M=4^{10}.5+...+4^{198}.5\)
\(\Rightarrow M=\left(4^{10}+...+4^{198}\right).5⋮5\)
\(\Rightarrow M⋮5\)
\(\Rightarrow M\in B\left(5\right)\left(đpcm\right)\)
M = (4^10 + 4^11) + .... + (4^198 + 4^199)
M = 4^10.5+....+4^198.5
= 5.(4^10 + 4^12+....+4^198)
M = (4^10+4^11)+(4^12+4^13)+.....+(4^198+4^199)
= 4^10.(1+4)+4^12.(1+4)+.....+4^198.(1+4)
= 4^10.5+4^12.5+.....+4^198.5
= 5.(4^10+4^12+....+4^198) chia hết cho 5
vậy M chia hết cho 5
ta có: A = 3 + 3^2 + ...+ 3^20 ( có 20 số hạng)
A = (3+3^2) + ...+ (3^19+3^20)
A = 3.(1+3) + ...+ 3^19.(1+3)
A = 3.4 + ...+ 3^19.4
A = 4.(3+...+3^19) chia hết cho 4
phần còn lại làm tương tự nha
M = (4^10+4^11)+(4^12+4^13)+.....+(4^198+4^199)
= 4^10.(1+4)+4^12.(1+4)+.....+4^198.(1+4)
= 4^10.5+4^12.5+.....+4^198.5
= 5.(4^10+4^12+....+4^198) chia hết cho 5
=> ĐPCM
k mk nha
Ta có: \(M=\left(4^{10}+4^{11}\right)+\left(4^{12}+4^{13}\right)+...+\left(4^{198}+4^{199}\right)\)
\(=4^{10}.\left(1+4\right)+4^{12}.\left(1+4\right)+...+4^{198}.\left(1+4\right)\)
\(=4^{10}.5+4^{12}.5+...+4^{198}.5\)
\(=5.\left(4^{10}+4^{12}+...+4^{198}\right)\text{chia hết cho 5}\)
=> M chia hết cho 5
=> M là B(5) => đpcm.
M=410+411+...+4198+4199
=410(1+4)+...+4198(1+4)
=410*5+...+4198*5
=(410+4198)*5
Vì 5 là bội của 4 nên (410+4198)*5 cũng là bội của 5 hay M là bội của 5
M = (410 +411) + ( 412+413) + ...+(4198 +4199)
= 410 ( 1+4) + 412(1+4) +....+ 4198(1+4)
= 5.(410 +412 + ...+ 4198)
=> M chia hết cho 5