Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi tắt là bất đẳng thức Cauchy, sử dụng để chứng minh bất đẳng thức số có điều kiện lớn hơn 0
Đây là công thức tổng quát:
bạn đặt câu hỏi quá chung mình không biết là bạn muốn hỏi cách chứng minh hay là gì để trả lời rõ:p
Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)
<=>\(a+b-2\sqrt{ab}\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
=>dpcm
<=> \(a+b\ge2\sqrt{ab}\)
<=> \(a+b-2\sqrt{ab}\ge0\)
<=. \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng )
dấu = khi a=b
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
\(A=\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}\)
\(=\frac{a}{\left(b+a\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(c+b\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)
Áp dụng bđt \(\frac{x}{y+z}\le\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\) ta có :
\(A\le\frac{1}{4}\left(\frac{a}{b+a}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)\)
\(\Leftrightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}\right)=\frac{1}{4}.3=\frac{3}{4}\) có GTLN là \(\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(GTLN:\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}=\frac{3}{4}\)
Hai bđt đó là một đấy bạn.
Ngoài ra còn có tên là BĐT Cauchy dạng Engel nữa mà mình ko biết Engel là gì cả?:)
Chữ Svac-xơ được phiên âm từ chữ Schwarz ra mà bạn
Engel là lấy theo tên nhà toán học Đức Arthur Engel thì phải