K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2020

\(H=\int\limits^3_2\frac{1}{x^2\left(x+1\right)}dx\)

Sử dụng hệ số bất định để tách biểu thức tích phân:

\(\frac{1}{x^2\left(x+1\right)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+1}=\frac{Ax\left(x+1\right)+B\left(x+1\right)+Cx^2}{x^2\left(x+1\right)}=\frac{\left(A+C\right)x^2+\left(A+B\right)x+B}{x^2\left(x+1\right)}\)

Đồng nhất 2 vế ta được: \(\left\{{}\begin{matrix}A+C=0\\A+B=0\\B=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=-1\\B=C=1\end{matrix}\right.\)

\(\Rightarrow H=\int\limits^3_2\left(-\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x+1}\right)dx=\left(-lnx-\frac{1}{x}+ln\left(x+1\right)\right)|^3_2=3ln2-2ln3+\frac{1}{6}\)

11 tháng 2 2020

cảm ơn Nguyễn Việt Lâm đã giúp đỡ !

Chọn B

NV
15 tháng 11 2019

\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)

\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)

\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)

\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)

\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)

\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)

\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)

NV
15 tháng 11 2019

\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)

\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)

\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)

\(I_8=\int\left(2x+1\right)^{20}dx\)

Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)

\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)

\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)

\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)

Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)

\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)

\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)

NV
2 tháng 5 2019

Bài 1:

\(y'=3\left(x+m\right)^2+3\left(x+n\right)^2-3x^2\)

\(y'=3\left(x^2+2mx+m^2\right)+3\left(x^2+2nx+n^2\right)-3x^2\)

\(y'=3\left(x^2+2\left(m+n\right)x+m^2+n^2\right)\)

Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Rightarrow\Delta'=\left(m+n\right)^2-\left(m^2+n^2\right)\le0\) \(\Rightarrow mn\le0\)

\(P=4\left(m+n\right)^2-\left(m+n\right)-8mn\ge4\left(m+n\right)^2-\left(m+n\right)\ge-\frac{1}{16}\)

Bài 2: Đề bài rất kì quặc

Mình nghĩ cách giải sẽ như sau: nhận thấy \(z=0\) ko phải nghiệm nên chia 2 vế cho \(z^3\):

\(z^3+2016z^2+2017z+2018+\frac{2017}{z}+\frac{2016}{z^2}+\frac{1}{z^3}=0\)

\(\Leftrightarrow z^3+\frac{1}{z^3}+2016\left(z^2+\frac{1}{z^2}\right)+2017\left(z+\frac{1}{z}\right)+2018=0\)

Đặt \(z+\frac{1}{z}=a\Rightarrow\left\{{}\begin{matrix}a^2=z^2+\frac{1}{z^2}+2\Rightarrow z^2+\frac{1}{z^2}=a^2-2\\a^3=z^3+\frac{1}{z^3}+3\left(z+\frac{1}{z}\right)\Rightarrow z^3+\frac{1}{z^3}=a^3-3a\end{matrix}\right.\)

\(\Rightarrow a^3-3a+2016\left(a^2-2\right)+2017a+2018=0\)

\(\Leftrightarrow a^3+2016a^2+2014a-2014=0\)

Đặt \(f\left(a\right)=a^3+2016a^2+2014a-2014\)

\(f\left(-2015\right)=1\) ; \(f\left(-2016\right)=...< 0\)

\(\Rightarrow f\left(-2015\right).f\left(-2016\right)< 0\Rightarrow\) phương trình luôn có ít nhất một nghiệm \(a_0\in\left(-2016;-2015\right)\)

Khi đó ta có: \(z+\frac{1}{z}=a_0\Rightarrow z^2-a_0z+1=0\)

\(\Delta=a_0^2-4>0\) do \(a_0\in\left(-2016;-2015\right)\) nên \(a_0^2>2015^2>4\)

\(\Rightarrow\) Phương trình đã cho có ít nhất 2 nghiệm thực nên ko thể có 6 nghiệm phức

\(\Rightarrow\) Đề bài sai :(

3 tháng 5 2019

Bài 2 mình dùng phương trình đối xứng ra được ko bạn ??

NV
18 tháng 10 2020

\(y'=x^2-2mx+m^2-1\)

Hàm có 2 cực trị khi và chỉ khi:

\(x^2-2mx+m^2-1=0\) có 2 nghiệm

\(\Leftrightarrow\Delta'=m^2-\left(m^2-1\right)>0\Leftrightarrow1>0\) (luôn thỏa mãn)

Khi đó, gọi \(x_1;x_2\) là hai cực trị, theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-7=0\)

\(\Leftrightarrow4m^2-3\left(m^2-1\right)-7=0\)

\(\Leftrightarrow m^2-4=0\Rightarrow m=\pm2\)

1.Tính các giá trị biểu thức sau:a)510000.log52-59999.log52-...-53.log52-52.log52=?b)(x2+1).4100000-(x2+1).499999,5-...-(x2+1).43.5-(x2+1).43=?2.Giải ptrình bậc cao sau:a)x.(x2+y)150000-x.(x2+y)149999-...-x.(x2+y)2-x3-xy-2=0b)xy(2y+1)50000-xy(2y+1)49999-...-xy(2y+1)2-2xy2-3=0c)x2(x+1)10000-x2(x+1)9999-...-x2(x+1)2-x2(x+1)-x2-1=0d)x.(\(\sqrt{x+1}\))10000-x.(\(\sqrt{x+1}\))9998-...-x.(\(\sqrt{x+1}\))4-x-3=03.Tính giá trị tại vị trí gián đoạn...
Đọc tiếp

1.Tính các giá trị biểu thức sau:

a)510000.log52-59999.log52-...-53.log52-52.log52=?

b)(x2+1).4100000-(x2+1).499999,5-...-(x2+1).43.5-(x2+1).43=?

2.Giải ptrình bậc cao sau:

a)x.(x2+y)150000-x.(x2+y)149999-...-x.(x2+y)2-x3-xy-2=0

b)xy(2y+1)50000-xy(2y+1)49999-...-xy(2y+1)2-2xy2-3=0

c)x2(x+1)10000-x2(x+1)9999-...-x2(x+1)2-x2(x+1)-x2-1=0

d)x.(\(\sqrt{x+1}\))10000-x.(\(\sqrt{x+1}\))9998-...-x.(\(\sqrt{x+1}\))4-x-3=0

3.Tính giá trị tại vị trí gián đoạn sau:

a)250000-249999-...-24-23=?Biết gián đoạn tại vị trí thứ 4

b)710000.log72-79999.log72-...-72.log72-7log72=?Biết gián đoạn tại vị trí 3->5

c)22+23+...+24999+25000=?Biết gián đoạn tại vị trí thứ 350 và vị trí 600

4.Thực hiện các yêu cầu sau:

Cho pt M:        x.(x+1)50000-x.(x+1)49999-...-x.(x+1)3-x.(x+1)2-n=0

a.Xác định x=?

b.Tính n=?

c.Số nào dưới đây là số nguyên tố:

A.n+1/n-1

B.n+2/n-2

C.n+3/n-3

D.n+4/n-4

d.Xác định phương trình đồng dạng bậc 20(¶20)?

5.Cho ptrình bậc 2 sau:x2-2x=0

a.Xác định hàm P=?

A.P=(x2)x^2-2x   B.P=(x2-2x)/(x2-2x)  C.P=2xx^2  D.(x2-2x)x^2-2x

b.Xác định hàm P(x)?Biết Q(x)=2x+1

A.P(x)=2x  B.P(x)=2.(x+1)  C.P(x)=2.(x+2)  D.P(x)=2.(x+3)

c.Tính lim(P/Q(x))=?

A.0  B.1  C.2  D.3

d.Ptrình bậc cao:250000-249999-...-22-21 ~ vs hàm nào cuả pt bậc 2?

A.2P=2.2xx^2-2x  B.2P=2.x2.2x  C.2P=2.22x   D.2P=2.42x

e.Đồ thị hàm bậc cao nằm trên:

A.Trục tung  B.Trục hoành  C.A,B đúng  D.A,C sai

f.Khi nào P=P(x)?

A.Q(x)=0  B.P(x)=0  C.P=0  D.Q(x)=P

g.Hãy biến ptrình bậc 3 sau về ptrình bậc cao:x3-x=0?

A.(x3-x)50000-(x3-x)49999-...-(x3-x)2-x3-x=0

B.(x3-x)50000-(x3-x)49999-...-(x3-x)2-x3+x=0

C.(x3+x)50000-(x3+x)49999-...-(x3+x)2-x3-x=0

D.(x3+x)50000-(x3+x)49999-...-(x3+x)2-x3+x=0

h.Từ ptrình bậc 3 ở câu g so sánh P1=xx^3-x và P2=x3.(x^3-x)

A.P1>P2  B.P1=P2  C.P1<P2  D.P1~P2

i.Từ câu h,hãy tính giá trị biểu thức sin(P1-1)+cos(P2-1)+tan(P1P2-P1-P2+1)=?

A.-3    B.-1   C.1   D.3

 

 

 

Giúp mik với

0