Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.ta có:
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
với x+y+z = 0 => x^3 + y^3 + z^3 - 3xyz = 0 => x^3 + y^3 + z^3 = 3xyz
2.
x=5
=>6=x+1
=> A=x6-6x5+6x4-6x3+6x2-6x+6=x6-(x+1).x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)
=x6-x6-x5+x5-x4+x4-x3+x3-x2+x2-x+x+1
=1
vậy A=1 khi x=5
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
Bài 1:
\(Q=x^4+2x^2+2\left(x^2+1\right)\left(x^2+6x-1\right)+\left(x^2+6x-1\right)^2\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^4+2x^2+1\right)\right]-1\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2-6x+1\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right]-1\)
\(Q=\left(x^2+6x-1+x^2+1\right)^2-1\)
\(Q=\left(2x^2+6x\right)^2-1\)
\(Q=99^2-1\)
\(Q=9800\)
Bài 2:
Đặt \(A=\left(2+1\right)\left(2^2+1\right)...\left(x^{64}+1\right)+1\)
\(\left(2-1\right)\cdot A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(1\cdot A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(A=2^{128}-1^2+1\)
\(A=2^{128}\left(đpcm\right)\)
Bài 3:
Để C là số nguyên thì x2 - 3 ⋮ x - 2
<=> x (x - 2) + 2x - 3 ⋮ x - 2
mà x (x - 2) ⋮ x - 2
=> 2x - 3 ⋮ x - 2
<=> 2 (x - 2) + 3 ⋮ x - 2
mà 2 (x - 2) ⋮ x - 2
=> 3 ⋮ x - 2
=> x - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy x thuộc { -1; 1; 3; 5 }
a) x3 - 6x2 + 11x - 6
= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )
= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - 4x + 3 )
= ( x - 2 )( x2 - x - 3x + 3 )
= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]
= ( x - 2 )( x - 1 )( x - 3 )
b) x3 - 6x2 - 9x + 14
= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )
= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )
= ( x - 1 )( x2 - 5x - 14 )
= ( x - 1 )( x2 + 2x - 7x - 14 )
= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]
= ( x - 1 )( x + 2 )( x - 7 )
c) x3 + 6x2 + 11x + 6
= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )
= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )
= ( x + 2 )( x2 + 4x + 3 )
= ( x + 2 )( x2 + x + 3x + 3 )
= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]
= ( x + 2 )( x + 1 )( x + 3 )
e) x6 - 9x3 + 8
Đặt t = x3
bthuc <=> t2 - 9t + 8
= t2 - t - 8t + 8
= t( t - 1 ) - 8( t - 1 )
= ( t - 1 )( t - 8 )
= ( x3 - 1 )( x3 - 8 )
= ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )
1. \(< =>\left(6x^2+31x+18\right)-\left(6x^2+13x+2\right)=x+1-a+6\)
\(< =>6x^2+31x+18-6x^2-13x-2=7\)
\(< =>18x+16=7\)
\(< =>18x=7-16\)
\(< =>18x=-9\)
\(< =>x=-\frac{9}{18}=-\frac{1}{2}\)
a)
\(A=5x-x^2\)
\(A=-x^2+5x\)
\(A=-\left(x^2-5x\right)\)
\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)
\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)
mà mũ chẵn luôn >= 0
\(\Rightarrow A\le\frac{25}{4}\)
Dấu '=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy,.........
b)
\(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x\right)\)
\(B=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
\(B=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
mà ( x - 1/2 )2 luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow B\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy,..........