\(\left(1-\dfrac{2\sqrt{x}}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{9x-1}\right):\left(\dfrac{9\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

a) Để biểu thức E được xác định thì \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\9x-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x>0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

b) \(E=\left(1-\dfrac{2\sqrt{x}}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{9x-1}\right):\left(\dfrac{9\sqrt{x}+6}{3\sqrt{x}+1}-3\right)=\left[\dfrac{3\sqrt{x}+1-2\sqrt{x}}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\dfrac{9\sqrt{x}+6-9\sqrt{x}-3}{3\sqrt{x}+1}\right)=\left[\dfrac{\sqrt{x}+1}{3\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\dfrac{3}{3\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{3\sqrt{x}+1}.\left(1+\dfrac{1}{3\sqrt{x}-1}\right).\dfrac{3\sqrt{x}+1}{3}=\dfrac{\sqrt{x}+1}{3\sqrt{x}+1}.\dfrac{3\sqrt{x}+1}{3}.\dfrac{3\sqrt{x}}{3\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

30 tháng 10 2018

a) điều kiện : \(x>0;x\ne9\)

ta có : \(A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\) \(\Leftrightarrow A=\left(\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\right)\) \(\Leftrightarrow A=\dfrac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\) b) \(A< -1\) \(\Leftrightarrow A+1< 0\Leftrightarrow\dfrac{-3\sqrt{x}}{2\sqrt{x}+3}+1< 0\Leftrightarrow\dfrac{-\sqrt{x}+3}{2\sqrt{x}+3}< 0\)

\(\Leftrightarrow-\sqrt{x}+3< 0\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

vậy ...

----------------------------(-_-)---------------------------------------------------

29 tháng 10 2018

Mysterious Person giup mk nha. Mk cảm ơn!

11 tháng 11 2018

A=\(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

=\(\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x+3}\right)\left(\sqrt{x}-3\right)}\times\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

=\(\dfrac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

29 tháng 10 2018

Mysterious Person Dương Nguyễn Nguyễn Thanh HằngKhôi Bùi

Arakawa Whiter Tạ Thị Diễm Quỳnh giúp mk nhá. Thanks!

20 tháng 7 2018

\(ĐKXĐ:x\ne1,x\ge0\)

\(Q=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(Q=\left[\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\dfrac{8\sqrt{x}}{9x-1}\right]:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(Q=\left(\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)

\(Q=\dfrac{3x+2\sqrt{x}}{9x-1}:\dfrac{9\sqrt{x}-3}{9x-1}\)

\(Q=\dfrac{3x+3\sqrt{x}}{9x-1}.\dfrac{9x-1}{9\sqrt{x}-3}\)

\(Q=\dfrac{3x+3\sqrt{x}}{9\sqrt{x}-3}\)

\(Q=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

b. Ta có: \(\sqrt{x}=\sqrt{6+2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\).

\(\Rightarrow Q=\dfrac{6+2\sqrt{5}+\sqrt{5}+1}{3.\left(\sqrt{5}+1\right)-1}=\dfrac{7+3\sqrt{5}}{3\sqrt{5}+3-1}=\dfrac{7+3\sqrt{5}}{3\sqrt{5}+2}=\dfrac{31+15\sqrt{5}}{41}\)

20 tháng 7 2018

a) ĐKXĐ: \(x\ge0;x\ne\dfrac{1}{9}\) , rút gọn: \(Q=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\dfrac{3}{3\sqrt{x}+1}=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}=\dfrac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(3\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)b) Thay x=\(6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\) vào Q, ta có: \(Q=\dfrac{6+2\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}}{3\sqrt{\left(\sqrt{5}+1\right)^2}-1}=\dfrac{6+2\sqrt{5}+\sqrt{5}+1}{3\sqrt{5}+3-1}=\dfrac{3\sqrt{5}+7}{3\sqrt{5}+2}=\dfrac{\left(3\sqrt{5}+7\right)\left(3\sqrt{5}-2\right)}{\left(3\sqrt{5}+2\right)\left(3\sqrt{5}-2\right)}=\dfrac{45-6\sqrt{5}+21\sqrt{5}-14}{45-4}=\dfrac{31+15\sqrt{5}}{41}\)

16 tháng 8 2018

Mình làm mấy bài rút gọn thôi nhé :v (mấy cái kia mình làm sợ không đúng)

\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1-\left(x+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+0-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left[-\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(-1\right)}{x+\sqrt{x}+1}\\ =-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

16 tháng 8 2018

Bài 3:

\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{\left(2x+\sqrt{x}\right)\sqrt{x}}{x}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+2\left(\sqrt{x}+1\right)\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x\left(2\sqrt{x}+1\right)}{x}+2\sqrt{x}+2\)

\(=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+1\\ =\dfrac{x-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{2x+1}{x+\sqrt{x}+1}\)

a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)

b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)

g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)

 

11 tháng 9 2017

1. b) \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\left(x\sqrt{\dfrac{6x}{x^2}}+\sqrt{\dfrac{6x}{9}}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\dfrac{7}{3}\sqrt{6x}:\sqrt{6x}=\dfrac{7}{3}\)

2.

P=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)(bn có ghi sai đề ko)

a) ĐKXĐ : \(x\ge1,x\ge2,x\ge0\)

b) P=\(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{x-3\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+4\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

c) thay x= \(4-2\sqrt{3}\)vào P ta có :

\(\dfrac{1}{\sqrt{4-2\sqrt{3}}-2}=\dfrac{1}{\sqrt{3}-1-2}=\dfrac{1}{\sqrt{3}-3}\)

13 tháng 9 2017

@Lê Đình Thái mk k ghi sai dè nha bn