Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
Từ gt => \(\Delta OAB\) vuông tại B và \(\Delta OAC\) vuông tại C
\(\Rightarrow\widehat{OAB}+\widehat{AOB}=90^o,\widehat{OAC}+\widehat{AOC}=90^o\)
\(\Rightarrow\left(\widehat{OAB}+\widehat{OAC}\right)+\left(\widehat{AOB}+\widehat{AOC}\right)=180^O\)
Hay \(\widehat{BAC}+\widehat{BOC}=180^O\Rightarrow\widehat{BOC}=180^o-\alpha\)
\(\Rightarrow\) số đo \(\widebat{BmC}=180^o-\alpha\) và số đo \(\widebat{BnC=180^o+\alpha}\)