K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

undefined

1 tháng 6 2021

tham khảo nhayeu

29 tháng 5 2017

D C O B A F H E S

  1. SA,SB là tiếp tuyến tại AB => \(SO⊥AB\)tại E => E là trung điểm của AB. H là trung điểm của CD => \(OH⊥CD\)Nên ta có \(\hept{\begin{cases}\widehat{SEF}=90^0\\\widehat{SHF}=90^0\end{cases}}\Rightarrow SEHF\)là tứ giác nội tiếp đường tròn đường kính SF
  2. Vì SA là tiếp tuyến của (O) tại A =>\(\Delta SAO\)vuông tại A. \(AB⊥SO\Rightarrow\)AE là đường cao nên theo hệ thức lượng trong tam giác vuông ta có:\(OE.OS=OA^2=R^2\) (R không đổi) nên tích OE.OS không phục thuộc vào vị trí của S
  3. \(HD=\frac{DC}{2}=\sqrt{OD^2-OH^2}=\sqrt{R^2-OH^2}=\sqrt{10^2-6^2}=8\Rightarrow DC=16\)=> SC=SD+CD=4+16=20 Vậy nên \(SA^2=SD.SC\Rightarrow SA=\sqrt{SD.SC}=\sqrt{4.20}=4\sqrt{5}\)
  4. Ta có O,H cố định nên OH cố định mà AB cắt OH tại F , F thuộc OH nên F là điểm cố định mà AB luôn đi qua khi S chạy trên tia đối của DC
31 tháng 5 2019

Tại sao SA2=SD.SC trong khi tam giác SAC không vuông???

Ko có tam giác vg sao dùng đc hệ thức giữa cạnh và đường cao chứ @Hoàng Thanh Tuấn

25 tháng 2 2020

ai làm giúp mình với ạ hjc. deadline dí sát đít rồi huhu

8 tháng 3 2020


\(a.\Delta MAD\&\Delta MBA:\widehat{MAD}=\widehat{MBA}\left(=\frac{1}{2}\widebat{AD}\right);\widehat{AMB}=\widehat{AMD}\Rightarrow\Delta MAD~\Delta MBA\left(g.g\right)\Rightarrow MD^2=MB.MC\)b.Do I là trung điểm dây CD nên OI vuông góc CD mà ^SBO=90=>S;B;O;I cùng thuộc một đtròn
Mà dễ thấy S;B;A;O cùng thuộc một đtròn nên S;B;I;O;A  cùng thuộc một đtròn
Do đó ^SIA=^SBA,^SIB=^SAB.Mà ^SAB=^SBA(do SA,SB là tiếp tuyến (O))=>^SIA=^SIB=>Đpcm
c.^DIE=^DCA=^DBE=>B;D;E;I cùng thuộc một đtròn=>^DEB=^DIB=^SAB=>DE//SA=>DE//BC
d.

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0