K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOCD can tại O

mà OI là trung tuyến

nên OI vuông góc CD

Xét tứ giác OAMB có

góc OAM+góc OBM=180 độ

=>OAMB là tứ giác nội tiếp

=>O,A,M,B cùng thuộc 1 đường tròn đường kính OM(1)

Vì ΔOIM vuông tại I

nên I nằm trên đường tròn đường kính OM(2)

Từ (1), (2) suy ra ĐPCM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng vơi ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

25 tháng 4 2023

help câu d

 

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xet ΔMBC và ΔMDB có

góc MBC=góc MDB

góc BMC chung

=>ΔMBC đồng dạng với ΔMDB

=>MB/MD=MC/MB

=>MB^2=MD*MC

 

a: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

=>ΔABC đòng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

b: góc AMO=góc ABO=90 độ

=>ABMO nội tiếp, I là trung điểm của AO

23 tháng 5 2019

Tớ không vẽ hình được bạn tự vẽ nhé

a, Vì K thuộc đường tròn đường kính AB

=> AKB=90

Mà CHA=90

=> tứ giác AKNH nội tiếp

Vậy tứ giác AKNH nội tiếp

b,Vì 2 tiếp tuyến cắt nhau tại M 

nên \(OM\perp AC\)

=>\(OM//CB\)

=> tam giác AMO đồng dạng tam giác HCB

=> ĐPCM

c, Tứ giác AMKI nội tiếp do AIM=AKM=90

KIC=AMK

MÀ AMK=KNC do AM song song CH

=> KIC=KNC

=> tứ giác KINC nội tiếp 

=>KNI=KCI

Mà  KCI=KBA

=> KNI=KBA

=> IN song song AB

Vậy IN song song AB

Mình không viết kí hiệu góc nên bạn thông cảm

NV
29 tháng 3 2023

Ta có: \(OB=OC=R\) ; \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)

\(\Rightarrow OA\) là trung trực của BC

\(\Rightarrow OA\) là phân giác góc \(\widehat{BAC}\) (1)

Mặt khác I thuộc OA \(\Rightarrow IB=IC\Rightarrow\Delta IBC\) cân tại I

\(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

Mà \(\widehat{BCI}=\widehat{ABI}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung BI)

\(\Rightarrow\widehat{CBI}=\widehat{ABI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\) (2)

(1);(2) \(\Rightarrow I\) là tâm đường tròn nội tiếp tam giác ABC

29 tháng 3 2023

https://hoc24.vn/cau-hoi/.7839714164433

Anh giúp em ạ! 

7 tháng 5 2018

1). Gọi S điểm đối xứng với P qua M.Theo tính chất đối xứng của hình thang cân dễ thấy tứ giác ABSP cũng là hình thang cân.

Ta lại có    Q P S ^ = Q A B ^ = Q R B ^  .

Từ đó có E P Q ^ = E R P ^ ⇒ Δ E R P ∽ Δ E P Q  (g – g),

nên E Q P ^ = E P R ^ = B P S ^ = A S E ^ , suy ra tứ giác AEQS nội tiếp.

Do đó P A . P Q = P E . P S = P F 2 .2 P M = P F . P M , suy ra tứ giác A M Q F  nội tiếp.

Từ đó suy ra đường tròn ngoại tiếp tam giác △ A Q F  luôn đi qua M.

20 tháng 10 2019

1). Vì MP là đường kính suy ra  P N ⊥ M N  (1).

Vì MD là đường kính suy ra  D N ⊥ M N  (2).

Từ (1) và (2), suy ra N; P; D thẳng hàng.

27 tháng 8 2016

a) Vì tam giác AFB đồng dạng với ACF(g.g) nên: 
AF/AC=AB/AF hay AF^2=AB.AC => AF=căn(AB.AC) ko đổi 
Capture.PNG

Mà AE=AF (T/cTtuyen) nên E, F cùng thuộc đường tròn bán kính căn(AB.AC) 
b)Ta có: OI vuông góc với BC (T/ đường kính và dây) 
Các điểm E, F, I cùng nhìn OA dưới 1 góc ko đổi 90 độ nên O,I,F,A,E cùng thuộc đường tròn đường kính OA 
Ta có góc FIA=FOA(Cùng chắn cung FA trong đường tròn (OIFAE) 
Mà góc FKE=FOA( Cùng bằng \(\frac{1}{2}\) góc FOE) 
Suy ra góc FIA=FKE, nhưng hai góc này lại ở vị trí SLT nên KE//AB 

31 tháng 8 2016

bạn vẽ cái đó bằng phần mềm j vậy, chỉ mik nha