Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H cách A cố định một khoảng bằng OA không đổi nên H di chuyển trên đường tròn (A ; AO).
Chúc bạn học tốt
a: Xét (O) có
MA là tiếp tuyến có A là tiếp điểm
MB là tiếp tuyến có B là tiếp điểm
Do đó: MA=MB
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
Suy ra: \(\widehat{MAB}=\widehat{MBA}\)
Xét ΔDAB vuông tại D và ΔEBA vuông tại E có
BA chung
\(\widehat{DBA}=\widehat{EAB}\)
Do đó: ΔDAB=ΔEBA
Suy ra: \(\widehat{DAB}=\widehat{EBA}\)
hay \(\widehat{HAB}=\widehat{HBA}\)
Xét ΔHBA có \(\widehat{HAB}=\widehat{HBA}\)
nên ΔHBA cân tại H
Suy ra: HA=HB
hay H nằm trên đường trung trực của AB(1)
Ta có:MA=MB
nên M nằm trên đường trung trực của AB(2)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,H,M thẳng hàng
gọi K là giao của MO và AB => MK.MO=MA^2
mà MA^2=MC.MD( ko đổi) và MO cos định => MK ko đổi,,,,mà M cố định,,,k thuộc MO cố định => K cố định =>..............
O A M B C H K d
a) Ta có: MB và MC là 2 tiếp tuyến kẻ từ M tới đường tròn (O) => MB = MC và MO là phân giác ^BMC
Xét \(\Delta\)BCM cân tại M có đường phân giác MO => MO vuông góc BC tại H
=> ^OHK = 900 => \(\Delta\)OHK ~ \(\Delta\)OAM (g.g) => \(\frac{OH}{OA}=\frac{OK}{OM}\Rightarrow OA.OK=OH.OM\)
Xét \(\Delta\)MBO có ^MBO = 900 và BH vuông góc MO tại H
\(\Rightarrow OH.OM=OB^2=R^2\) (Hệ thức lượng trg tam giác vuông)
\(\Rightarrow OA.OK=R^2\) => OA.OK có giá trị ko đổi (đpcm).
\(\Leftrightarrow OK=\frac{R^2}{OA}\). Mà R2 và OA có độ dài ko đổi => OK có độ dài ko đổi.
Do K nằm trên OA cố định và OK ko đổi nên điểm K cố định.
=> BC luôn đi qua điểm K cố định (vì BC cắt OA tại K) (đpcm).
b) Ta thấy: ^OHK = 900 và OK không đổi (cmt)=> Điểm H di động trên 1 đường tròn cố đinh có đường kính OK.
c) Tứ giác MBOC có 2 đường chéo vuông góc với nhau nên \(S_{MBOC}=\frac{OM.BC}{2}\)
Ta có: \(OM\ge OA\)(Quan hệ đg xiên hình chiếu) \(\Rightarrow S_{MBOC}\ge\frac{OA.BC}{2}=R.BC\)(1)
Khi đó thì BC vuông góc OA => H trùng K => BC = 2.BK
Lại có: \(OK=\frac{R^2}{OA}=\frac{R^2}{2R}=\frac{R}{2}\). Áp dụng ĐL Pytago cho \(\Delta\)BKO:
\(\Rightarrow BK^2=OB^2-OK^2=R^2-\frac{R^2}{4}=\frac{3R^2}{4}\Leftrightarrow BK=\frac{\sqrt{3}.R}{2}\)
\(\Rightarrow BC=2.BK=\sqrt{3}.R\)(2)
Thế (2) vào (1) ta có: \(S_{MBOC}\ge\)\(\sqrt{3}.R.R=R^2\sqrt{3}\)
Vậy \(S_{MBOC}\)nhỏ nhất <=> Điểm M trùng với điểm A và \(Min_{S_{MBOC}}=R^2\sqrt{3}.\)
Bạn học trường THCS Ba Mỹ phải không?
Mình trường THCS Phú Ngãi?