Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ trong TKHĐ, cô Chi check giúp em được không ạ :D
Trên tia đối tia HE lấy điểm X sao cho HF=HX
Gọi BN cắt ( O ) tại Y. Khi đó tứ giác AMNY là hình chữ nhật.( Có một vài tứ giác nội tiếp dễ chứng minh chú tự chứng minh đi nhá :))
Ta có:\(\widehat{GHE}=\widehat{GBE};\widehat{GHF}=\widehat{GAF}\) mà \(\widehat{GBE}=\widehat{GAF}\) nên \(\widehat{GHE}=\widehat{GHF}\)
Khi đó \(\widehat{AHF}=\widehat{EHB}=\widehat{AHX}\Rightarrow\Delta AFH=\Delta AXH\Rightarrow AF=AX\)
\(\Rightarrow\Delta AFO=AXO\Rightarrow OF=OX=R\Rightarrow X\in\left(O\right)\)
Ta có:\(\widehat{EAY}=\widehat{AEF}=\widehat{AYX}\) vì chắn 2 cung bằng nhau
Khi đó tứ giác AXYE là hình thang cân nên AY=EX=HE+HX=HE+HF
Vậy .........................
a: góc AEB=góc AFB=90 độ
góc GHB+góc GEB=180 độ
=>GHBE nội tiếp
b: góc AFG+góc AHG=180 độ
=>AFGH nội tiếp
góc FEG=góc AKH
góc HEG=góc FBA
góc AKH=góc FBA
=>góc FEG=góc HEG
=>EG là phân giác của goc FEH
góc EFG=góc HKB
góc HFG=góc EAB
góc HKB=góc EAB
=>góc EFG=góc HFG
=>FG là phân giác của góc HFE
=>G là tâm đường tròn nội tiếp ΔFEH
bài này mình tưởng có câu 3 nx mà . Nếu có câu 1, 2 thôi thì dễ
a) AB là đường kính của (O) , \(k\in\left(O\right)\)
=>\(\widehat{AKB}=90^0\)
\(\widehat{AKB}=\widehat{EHB}\left(=90^0\right)\)
=> tứ giác HEKB nội tiếp đường tròn
=> H , E ,K ,B nội tiếp đường tròn
2) AB là đường kính
\(MN\perp AB\equiv H\)
=> H là trung điểm của MN
\(\widebat{AM}=\widebat{NA}\)
=>\(\widehat{AMN}=\widehat{MKA}\)
xét tam giác AME zà tam giác AKM có
\(\widehat{AMN}=\widehat{MKA}\)
\(\widehat{MAE}chung\)
=>\(\Delta AME~\Delta AKM\left(g.g\right)\)
B C O A D d M K E N I H F P d'
1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900
=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:
^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).
2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900
=> BM vuông góc CE. Xét \(\Delta\)BEC:
BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC
=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).
3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.
Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)
Tương tự: ^NBK = ^NDK (2)
Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN
Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)
Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)
Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH
=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF
Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)
Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:
^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)
=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)
Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)
Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)
\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900
=> ^DBF + ^DCH = 900 => CH vuông góc BF.
Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB
=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900
=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)
=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP
Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800
=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn
=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.
Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB
=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)
=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP
Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP
=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)
I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d
OC vuông góc d => OC // IF (8)
Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))
=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)
=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)
Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.