Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D P Q O I E
a) Ta có: Đường tròn (O;R) có đường kính CD và điểm A nằm trên cung CD => ^CAD=900
=> ^PAQ=900 => \(\Delta\)APQ vuông tại A
Do PQ là tiếp tuyến của (O) tại B => AB là đường cao của \(\Delta\)APQ
=> ^PAB=^AQP (Cùng phụ ^APQ) hay ^CAO=^DQP
Mà \(\Delta\)AOC cân tại O => ^CAO=^ACO => ^DQP=^ACO
Lại có: ^ACO+^PCD=1800 => ^DQP+^PCD=1800
=> Tứ giác CPQD nội tiếp đường tròn (đpcm).
b) Xét \(\Delta\)APQ vuông tại A: Có đường trung tuyến AI => \(\Delta\)AIQ cân tại I
=> ^IAQ=^IQA hay ^IAQ=^DQP => ^IAQ=^ACO (Do ^DQP=^ACO)
Hay ^IAQ=^ACD. Mà ^IAQ+^CAI=900 => ^ACD+^CAI=900
=> AI vuông góc với CD (đpcm).
c) Ta thấy tứ giác CPQD nội tiếp đường tròn
=> 4 đường trung trực của CP;CD;DQ;PQ cắt nhau tại 1 điểm (1)
E là tâm đường tròn ngoại tiếp \(\Delta\)CPQ => Trung trực của CP và CD cắt nhau tại E (2)
Từ (1) và (2) => Điểm E nằm trên trung trực của PQ.
Lại có: I là trung điểm PQ => E là điểm cách PQ 1 khoảng bằng đoạn EI (*)
AB vuông góc PQ; EI cũng vuông góc PQ => AB//EI hay AO//EI (3)
E thuộc trung trực CD; O là trung điểm CD => OE vuông góc CD.
Mà AI vuông góc CD => OE//AI (4)ư
Từ (3) và (4) => Tứ giác AOEI là hình bình hành => AO=EI (**)
Từ (*) và (**) => E là điểm cách PQ 1 khoảng bằng đoạn AO
Mà AO là bk của (O); PQ là tiếp tuyến của (O) tại B
Nên ta có thể nói: Điểm E là điểm cách tiếp tuyến của (O) tại B một khoảng bằng độ dài bán kính của (O)
Vậy khi đường kính CD thay đổi thì điểm E di động trên đường thẳng song song với tiếp tuyến tại B của đường tròn (O) và cách (O) 1 khoảng bằng độ dài bk của (O).
c, Gọi K là giao điểm của DG và IF
Vì D là giao điểm của 2 tiếp tuyến
-=>\(AC\perp OD\)
=>ADO=CAB=FAE
=> tam giác ADO đồng dạng tam giác EAF
=> \(\frac{AD}{EA}=\frac{AO}{EF}\)
=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)
=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )
=> ABD=IFE
=> tứ giác KBEF nội tiếp
=> FBK=90độ
=> \(GK\perp IF\)
Lại có \(IE\perp FG\),IE giao GK tại B
=> B là trực tâm của tam giác IFG
MÀ B cố định
=> ĐPCM
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)