Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ không vẽ hình được bạn tự vẽ nhé
a, Vì K thuộc đường tròn đường kính AB
=> AKB=90
Mà CHA=90
=> tứ giác AKNH nội tiếp
Vậy tứ giác AKNH nội tiếp
b,Vì 2 tiếp tuyến cắt nhau tại M
nên \(OM\perp AC\)
=>\(OM//CB\)
=> tam giác AMO đồng dạng tam giác HCB
=> ĐPCM
c, Tứ giác AMKI nội tiếp do AIM=AKM=90
KIC=AMK
MÀ AMK=KNC do AM song song CH
=> KIC=KNC
=> tứ giác KINC nội tiếp
=>KNI=KCI
Mà KCI=KBA
=> KNI=KBA
=> IN song song AB
Vậy IN song song AB
Mình không viết kí hiệu góc nên bạn thông cảm
A B C D O M
a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A
b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)
=> tam giác DCO đồng dạng với tam giác DBA
=> DC/DB = DO/DA
=> DC.DA = DO.DB (đpcm)
c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)
Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM
Theo Viet ta có: DA/DM = AB/MO
=> AM/DM + 1 = AB/OM
=> AB/OM - AM/DM = 1 (*)
Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)
=> OM = AM
(*) trở thành: AB/AM - AM/DM = 1 (đpcm)
a: Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
=>ΔABC đòng dạng với ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
b: góc AMO=góc ABO=90 độ
=>ABMO nội tiếp, I là trung điểm của AO
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)
a: ΔOCD can tại O
mà OI là trung tuyến
nên OI vuông góc CD
Xét tứ giác OAMB có
góc OAM+góc OBM=180 độ
=>OAMB là tứ giác nội tiếp
=>O,A,M,B cùng thuộc 1 đường tròn đường kính OM(1)
Vì ΔOIM vuông tại I
nên I nằm trên đường tròn đường kính OM(2)
Từ (1), (2) suy ra ĐPCM
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng vơi ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
Ta có: \(OB=OC=R\) ; \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)
\(\Rightarrow OA\) là trung trực của BC
\(\Rightarrow OA\) là phân giác góc \(\widehat{BAC}\) (1)
Mặt khác I thuộc OA \(\Rightarrow IB=IC\Rightarrow\Delta IBC\) cân tại I
\(\Rightarrow\widehat{CBI}=\widehat{BCI}\)
Mà \(\widehat{BCI}=\widehat{ABI}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung BI)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\) (2)
(1);(2) \(\Rightarrow I\) là tâm đường tròn nội tiếp tam giác ABC