Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BP//KM
=>PK=BM
=>PK=AN
mà PK//AN
nên ANKP là hình bình hành
A B C O D E S F N M I
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
a ) Ta có BM=MD (gt)
=> ΔΔMBD cân tại M
Mặt khác AMBˆ=ACBˆAMB^=ACB^ ( Hai góc nội tiếp chắn cung AB)
Mà ACBˆ=600ACB^=600( tam giác ABC đều)
Suy ra AMBˆ=600hayDMBˆ=600AMB^=600hayDMB^=600
Vậy ΔMBDΔMBD đều
b) Ta có ΔMBDΔMBD đều ( CMT)
Suy ra : DMBˆ=DBCˆ+CBMˆ=600DMB^=DBC^+CBM^=600(1)
Lại có : tam giác ABC đều (gt)
Suy ra : ABCˆ=ABDˆ+DBCˆ=600ABC^=ABD^+DBC^=600(2)
Từ (1) và (2) suy ra ABDˆ=MBCˆABD^=MBC^
Xét hai tam giác ABD và CBM ta có
BC=BA (gt)
ABDˆ=MBCˆ(cmt)ABD^=MBC^(cmt)
BD=BM( tam giác MBD đều)
=> ΔABD=ΔCBM(c.g.c)ΔABD=ΔCBM(c.g.c)
c)ΔABD=ΔCBM(cmt)ΔABD=ΔCBM(cmt)
SUy ra AD=CM
mà AM=AD+DM
SUy ra MA=MC+MD