Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB và MA=MB
MO là phân giác của góc AMB
=>\(\widehat{AMO}=\dfrac{\widehat{AMB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔOAM vuông tại A có \(tanAMO=\dfrac{OA}{AM}\)
=>\(\dfrac{6}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)
=>\(AM=6\cdot\dfrac{3}{\sqrt{3}}=6\sqrt{3}\left(cm\right)\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
=>\(\widehat{MBA}=60^0\)
Gọi bán kính đường tròn nội tiếp ΔMAB là d
Diện tích tam giác MBA là:
\(S_{MBA}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB\)
\(=\dfrac{1}{2}\cdot6\sqrt{3}\cdot6\sqrt{3}\cdot sin60=27\sqrt{3}\left(cm^2\right)\)
Nửa chu vi tam giác MBA là:
\(p=\dfrac{6\sqrt{3}+6\sqrt{3}+6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)
Xét ΔMBA có \(S_{MBA}=p\cdot d\)
=>\(d=\dfrac{27\sqrt{3}}{3\sqrt{3}}=9\left(cm\right)\)
a: Xét tứ giác OAMB có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
nên OAMB là tứ giác nội tiếp
=>O,A,M,B cùng thuộc 1 đường tròn
b: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
=>BA\(\perp\)BC
mà AB\(\perp\)OM
nên BC//OM
c: Sửa đề: cắt AB tại I
Xét ΔAOI vuông tại O có OH là đường cao
nên \(HA\cdot HI=OH^2\)
=>\(HB\cdot HI=OH^2\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(HO\cdot HM=HA^2\)
Xét ΔOHA vuông tại H có \(OA^2=OH^2+HA^2\)
=>\(R^2=HB\cdot HI+HO\cdot HM\)
dễ ẹc!!!!!!!!
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^