K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

a) Xét tam giác OAH và tam giác OCH, có:

   OA=OC=R ;  OH chung  ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)

=> Tam giác OAH = tam giác OCH (ch-cgv)  => AH=HC (2 cạnh tương ứng)

<=> H là trung điểm cạnh AC (đpcm)

b)  Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC

      Xét tam giác OAM và tam giác OCM, có:  OA=OC=R ;  MA=MC ; OM chung

=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)

<=> MC là tiếp tuyến của (O)  (đpcm)

20 tháng 12 2018

O A B H C Q D E

a, Vì \(\hept{\begin{cases}OB=OC\\OA\perp BC\end{cases}}\)

=> OA là đường trung trực BC

Mà OA cắt BC tại H

=> H là trung điểm BC

b, Vì AB là tiếp tuyến (O)

=> \(\widehat{ABO}=90^o\) 

Do OA là trung trực của BC

=> AB = AC
Xét \(\Delta\)ABO và \(\Delta\)ACO có :

AB = AC (cmt)

OB = OC (=R)

AO chung

=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)

\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

\(\Rightarrow AC\perp CO\)

=> AC là tiếp tuyến (O) 

c, Xét tam giác OBA vuông tại B có
\(sin\widehat{BAO}=\frac{BO}{OA}=\frac{R}{2R}=\frac{1}{2}\)

\(\Rightarrow\widehat{BAO}=30^o\)

Vì AB , AC là 2 tiếp tuyến (O)

=> AO là p.g góc BAC

\(\Rightarrow\widehat{BAC}=2\widehat{BAO}=2.30^o=60^o\)
Vì AB = AC (Cmt)

=> \(\Delta\)ABC cân tại A

Mà ^BAC = 60o

=> \(\Delta\)ABC đều

Còn câu d, mình chưa nghĩ ra :(

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
19 tháng 3 2020

a) xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)

=>\(\widehat{ABO}+\widehat{ACO}=180^0\)

=> tứ giác ABOC nội  tiếp

=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))

b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)

=> AO là đường trung trực của BC

=> \(AH\perp BC,HB=HC\)

=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)

=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)

\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )

=> IB là tia phân giác của góc ABC 

c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)

mà \(OC=OD=>OC^2=OD^2\)

=>\(OD^2=OH.OA\)

19 tháng 3 2020

mình làm lại nha

câu c, d nè :

c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có

\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)

gọi J là  là tâm đường tròn  ngoại tiếp tam giác AHD

khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)

zậy 

\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)

=> OD là ....

d) CHỉ ra M, N thuộc trung trực AH

theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)

Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC

zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD

=> J trùng E

zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH

mặt khác M , N  đều thuộc trung trực của AH nên M ,E ,N thẳng hàng

15 tháng 12 2017

Câu hỏi của TRUONG LINH ANH - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại link bên trên nhé.