K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

412 + (340 - x) = 633

11 tháng 5 2017

bài náy giống bài của mik quá bn ơi

18 tháng 3 2021

B C A H E Q F P D

a/

Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')

=> B,F,E,C cùng nawmg trên một đường tròn

b/

Xét đường tròn (O) ta có

sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)

Xét đường tròn (O') ta có

sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau

c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)

Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)

Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)

4 tháng 2 2020

+) Kẻ \(OI\perp MN;OK\perp PQ\)

\(MI^2=OM^2-OI^2\Rightarrow MN^2=4R^2-4OI^2\)

\(PK^2=OP^2-OK^2\Rightarrow PQ^2=4R^2-4OK^2\)

\(\Rightarrow MN^2+PQ^2=8R^2-4\left(OI^2+OK^2\right)=8R^2-4OH^2\)

Áp dụng đẳng thức: \(x^2+y^2=\frac{\left(x+y\right)^2}{2}+\frac{\left(x-y\right)^2}{2}\)

Ta có: \(MN^2+PQ^2=\frac{\left(MN+PQ\right)^2}{2}+\frac{\left(MN-PQ\right)^2}{2}\)

\(\Leftrightarrow\left(MN+PQ\right)^2=2\left(MN^2+PQ^2\right)-\left(MN-PQ\right)^2\)

\(\Leftrightarrow MN+PQ=\sqrt{8\left(2R^2-OH^2\right)-\left(MN-PQ\right)^2}\)

Do \(8\left(2R^2-OH^2\right)\)không đổi nên

\(\left(MN+PQ\right)_{min}\Leftrightarrow\left(MN-PQ\right)^2_{max}\Leftrightarrow\hept{\begin{cases}MN_{max}\\PQ_{min}\end{cases}}\)hoặc \(\hept{\begin{cases}MN_{min}\\PQ_{max}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}MN=2R\\PQ\perp AB\left(H\right)\end{cases}}\)hoặc \(\Leftrightarrow\hept{\begin{cases}PQ=2R\\MN\perp AB\left(H\right)\end{cases}}\)

+) \(\left(MN+PQ\right)_{max}\Leftrightarrow\left(MN-PQ\right)^2_{min}\)\(\Leftrightarrow MN=PQ\Leftrightarrow OI=OK\Rightarrow\widehat{MHA}=\widehat{PHA}=45^0\)