K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

đề phải là OM=R/3 mới đúng chứ bạn

bạn tự vẽ hình theo đề OM=R/3 nha:

a) có \(\widehat{CND}=90^o\) (góc nt chắn nửa đường tròn)

hay \(\widehat{MND}=90^o\)

tứ giác OMND có \(\widehat{MND}+\widehat{MOD}=90^o+90^o=180^o\)

=> tứ giác OMND nội tiếp đường tròn

b)Có OM=R/3=OB/3 => BM=2/3 OB

tam giác CBD có BO là trung tuyến và BM=2/3 BO

=> M là trọng tâm của tam giác CBD

=> CM là trung tuyến của tam giác CBD

hay CK là trung tuyến

=> K là trung điểm của BD

\(\Delta KCB\)\(\Delta KDN\) có:
\(\widehat{CKB}=\widehat{DKN}\)(2 góc đối đỉnh)

\(\widehat{KCB}=\widehat{KDN}\)(cùng chắn cung BN)

\(\Rightarrow\Delta KCB\sim\Delta KDN\left(g.g\right)\)

\(\Rightarrow\dfrac{KC}{KD}=\dfrac{KB}{KN}\)

=> KC.KN=KB.KD

tam giác OBD vuông tại O

\(\Rightarrow BD=\sqrt{OB^2+OD^2}=\sqrt{R^2+R^2}=\sqrt{2R^2}=R\sqrt{2}\)

=> \(KB=KD=\dfrac{BD}{2}=\dfrac{R\sqrt{2}}{2}\)

=> KC.KN=\(\dfrac{R\sqrt{2}}{2}.\dfrac{R\sqrt{2}}{2}=\dfrac{R^2}{2}\left(đpcm\right)\)

c) tam giác COM vuông tại O

\(\Rightarrow CM=\sqrt{CO^2+OM^2}=\sqrt{R^2+\left(\dfrac{R}{3}\right)^2}=\dfrac{R\sqrt{10}}{3}\)

\(\Delta COM\)\(\Delta CND\) có:

\(\widehat{OCM}chung\)

\(\widehat{COM}=\widehat{CND}=90^o\)

\(\Rightarrow\Delta COM\sim\Delta CND\left(g.g\right)\)

\(\Rightarrow\dfrac{OM}{DN}=\dfrac{CM}{CD}\)

\(\Rightarrow DN=\dfrac{OM.CD}{CM}=\dfrac{\dfrac{R}{3}.2R}{\dfrac{R\sqrt{10}}{3}}=\dfrac{R\sqrt{10}}{5}\)

14 tháng 4 2019

ai gthich hộ chỗ cm K là tđiểm Bd với.Tại sao tam giác CBD có BO là trung tuyến và BM=2/3 OB thì M lại là trọng tâm của tam giác CBD ??

 

14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)

20 tháng 12 2023

loading... loading...