K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2021

Do tính đối xứng, không mất tính tổng quát, giả sử M nằm trên cung nhỏ AC

Từ M lần lượt kẻ ME vuông góc AB và MF vuông góc CD

Do \(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn \(\Rightarrow\widehat{AMB}=90^0\) hay tam giác AMB vuông tại M

Áp dụng hệ thức lượng: \(ME.AB=MA.MB\) \(\Leftrightarrow MA.MB=2R.ME\)

Tương tự: \(MC.MD=2R.MF\)

\(\Rightarrow MA.MB.MC.MD=4R^2.ME.MF\)

\(\Rightarrow\) Tích số đã cho đạt max khi \(ME.MF\) đạt max

Lại có tứ giác MEOF là hình chữ nhật (4 góc vuông)

\(\Rightarrow EF=MO=R\)

Áp dụng BĐT \(ab\le\dfrac{1}{2}\left(a^2+b^2\right)\) ta có:

\(ME.MF\le\dfrac{1}{2}\left(ME^2+MF^2\right)=\dfrac{1}{2}EF^2=\dfrac{1}{2}R^2\)

Dấu "=" xảy ra khi và chỉ khi \(ME=MF\) hay M nằm chính giữa cung AC

Vậy MA.MB.MC.MD đạt max khi M nằm chính giữa một trong các cung nhỏ AC, CB, BD hoặc DA

NV
15 tháng 7 2021

undefined

17 tháng 4 2020

Câu c) là gì vậy, có lẽ là toán cực trị, GTLN?

a) Vì M thuộc (O) nên các tam giác BMA và CMD vuông tại M nên:

\(sin^2MBA+sin^2MAB+sin^2MCD+sin^2MDC\)

\(=\left(sin^2MBA+cos^2MBA\right)+\left(sin^2MCD+cos^2MCD\right)\)

\(=1+1=2\)

b) KOHM là hình chữ nhật nên: OK = MH
Mà MH2 = HA.HB (Hệ thức lượng trong tam giác vuông MAB có MH đường cao)
và BH = AB - AH = 2R – AH
Suy ra \(OK^2=MH^2=AH\left(2R-AH\right)\)

19 tháng 12 2017

bn tựu vẽ hk nha

a, dễ cm tứ giác ABCD là hình thang

ta có AD//MO//CB(cùng vuông góc vs DC) 

    A0=B0  

từ đây suy ra DM=MC

B, TỪ M KẺ MH VUÔNG GÓC VS AB

TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)

LẠI CÓ GÓC AMO=GÓC MAO( do  MO=AO)  (2)

TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO

                   LẠI CÓ GÓC D=GÓC MHA=90

SUY RA TAM GIAC DMA=TAM GIAC HMA

SUY RA AD=AH

tự BC=HB

TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI

C, TA CÓ MH=DM=MC(CMT)

LẠI CÓ MHVUOONG GÓC VS AB 

SUY RA DƯỜNG TRÒN CD TX VS AB

D, TRONG HT VUÔNG ABCD CÓ DC<=AB

SUY RA  SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)

DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB

30 tháng 4 2017

a, Chứng minh ∆MEF:∆MOA

b, ∆MEF:∆MOA mà AO=OM => ME=EF

c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng

d, FA.SM = 2 R 2

e,  S M H O = 1 2 OH.MH ≤  1 2 . 1 2 M O 2 = 1 4 R 2

=> M ở chính giữa cung AC