K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Hình bạn tự vẽ nha. a) CM tứ giác MIOD là tứ giác nt, suy ra 4 điểm M,I,O,D cùng nằm trên đường tròn đk OM. Cm tiếp cho tứ giác MCOD là TGNT, suy ra 4 điểm M,C,O,D cùng nằm trên đtròn đk OM, vì thế 5 điểm M,I,O,C,D cùng nằm trên 1 đtròn, suy ra MCID nt          c) Vì MCID nt suy ra \(\widehat{MIC}\)=\(\widehat{MDC}\)\(\widehat{MID}=\widehat{MCD}\). mà \(\widehat{MCD}=\widehat{MDC}\) nên 2 góc còn lại bằng nhau, ta đc ĐPCM. Còn câu b à d bn đợi xíu nha, nếu đc mk đăng lên cho nha

21 tháng 5 2018

TỪ BỎ : AI LÀM ĐƯỢC THÌ LÀM ĐI 

18 tháng 2 2024

mm,

10 tháng 10 2019

a) dễ dàng chứng minh được MD2= MC2 = MA.MB ( bằng cách kẻ đường thẳng từ M qua O và chứng minh tam giác đồng dạng)

MC2=MA.MB => tam giác MAC đồng dạng với tam giác MCB => \(\frac{MA}{MC}=\frac{AC}{BC}\)(1)

MD2=MA.MB => tam giác MAD đồng dạng với tam giác MDB => \(\frac{MA}{MD}=\frac{AD}{BD}\)(2)

TỪ (1) và (2) => \(\frac{AC}{BC}=\frac{AD}{BD}\)=> AC.BD=AD.BC

b)

xét tam giác vuông MOE với đường cao OC; Đặt OM=x; 

\(\frac{1}{OE^2}+\frac{1}{OM^2}=\frac{OM^2+OE^2}{OM^2.OE^2}=\frac{ME^2}{OC^2.ME^2}\)=\(\frac{1}{OC^2}\)=>\(\frac{1}{OE^2}+\frac{1}{x^2}=\frac{1}{R^2}=>OE=\frac{x.R}{\sqrt{x^2-R^2}}\)

Tam giác MCO=tam giác MDO( vì OC=OD;OM cạnh chung và góc MCO=góc MDO=90o) => góc CMO = góc DMO 

tam giác MEF có MO vừa là đường cao vừa là phân giác nên MO cũng là đường trung tuyến của EF => EF=2OE

diện tích tam giác MEF là \(\frac{1}{2}OM.\)EF=OE.OM=\(\frac{x.R}{\sqrt{x^2-R^2}}x\)=R.\(\frac{x^2}{\sqrt{x^2-R^2}}\)\(\ge R\).R\(\sqrt{2}\)=R2\(\sqrt{2}\)

Thật vậy \(\frac{x^2}{\sqrt{x^2-R^2}}\ge2\sqrt{R}< =>\frac{x^4}{x^2-R^2}\ge4R\)<=> (x2-2R)2\(\ge0\)(đúng)

=> diện tích MEF nhỏ nhất khi x2=2R <=> x=OM =\(\sqrt{2R}\)hay M là giao của (O;\(\sqrt{2R}\)) và AB (có 2 điểm M thỏa mãn)