K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 2 2020
a) Ta có ABAB và ACAC là tiếp tuyến tại AA và BB của (O)(O)
⇒AB⊥OB⇒AB⊥OB và AC⊥OCAC⊥OC
Xét AOB và ΔAOCAOB và ΔAOC có:
OB=OC(=R)OB=OC(=R)
ˆABO=ˆACO=90oABO^=ACO^=90o
OAOA chung
⇒ΔAOB=ΔAOC⇒ΔAOB=ΔAOC (ch-cgv)
⇒AB=AC⇒AB=AC và có thêm OB=OC⇒AOOB=OC⇒AO là đường trung trực của BCBC
Mà H là trung điểm của BC
⇒A,H,O⇒A,H,O thẳng hàng
Tứ giác ABOCABOC có ˆABO+ˆACO=90o+90o=180oABO^+ACO^=90o+90o=180o
⇒A,B,C,O⇒A,B,C,O cùng thuộc đường tròn đường kính OAOA.
Hình tự vẽ nha e
a) Xét (O) có EF là dây cung, I là trung điểm của EF
=> OI vuông góc với EF (tính chất đường kính và dây)
=> \(\widehat{OIA}=90^o\)
Lại có : (O) có AB là tiếp tuyến tại B
=> AB vuông góc với OB (tc tiếp tuyến)
=> \(\widehat{ABO}=90^o\)
Xét tứ giác ABOI có \(\widehat{ABO}+\widehat{OIA}=90+90=180^o\) mà 2 góc này là 2 góc đối của tứ giác
=> tứ giác ABOI nt đường tròn (ĐPCM)
b) ta có tứ giác ABOI nt
=> \(\widehat{OAI}=\widehat{OBI}\)(2 góc nt cùng chắn cung OI)
mà \(\widehat{OAI}=\widehat{DIF}\)(2 góc so le trong, AO//FK)
=> \(\widehat{KBI}=\widehat{IFK}\)
Xét tứ giác BIKF có \(\widehat{KBI}=\widehat{IFK}\)
mà 2 góc trên là góc nội tiếp cùng chằn cung CI
=> tứ giác BIKF nt hay 4 điểm B,I,K,F cùng thuộc 1 đg tròn
chúc e học tốt
sao IFK chắn cung IC đk anh