Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) co
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
Xét tứ giác AHEC có
góc AHE+góc ACE=180 độ
=>AHEC là tứ giác nội tiếp
2: Xét ΔMBA và ΔMAC có
góc MBA=góc MAC
góc BMA chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MB*MC=MH*MO
a, Xét \(\Delta\)ABM và \(\Delta\)CAM có:
góc BAM = góc ACM (= \(\frac{1}{2}\)sđ cung AB)
góc M - chung
=> hai tam giác trên đồng dạng (g.g)
=> \(\frac{AM}{CM}\)= \(\frac{BM}{AM}\)( cặp canh tương ứng)
=> AM2 = BM.CM (đpcm)
b,+> Nối AO. Xét \(\Delta\)OAM và \(\Delta\)AHM có:
góc OAM = góc AHM (= 90o)
góc M - chung
=> hai tam giác này đồng dạng => \(\frac{AM}{HM}\)= \(\frac{OM}{AM}\)(cặp cạnh tương ứng) => AM2 = OM.HM mà theo câu a, AM2= MB.MC
=>MB.MC = MH.MO (đpcm)
+> Xét \(\Delta\)MBH và \(\Delta\)MOC có:
\(\frac{AM}{HM}\) = \(\frac{OM}{AM}\) (c.m.t)
góc M-chung
=> hai tam giác này đồng dạng (c.g.c) => góc MBH = góc MOC ( cặp góc tương ứng)
mà góc HBM là góc ngoài tại đỉnh B, và góc MO là góc trong đối diện với góc B nên: tứ giác OHBC cùng thuộc một đường tròn (đpcm)
3: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
=>ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
=>MA^2=MB*MC
=>MH*MO=MB*MC
=>MH/MB=MC/MO
=>MH/MC=MB/MO
=>ΔMHB đồng dạng với ΔMCO
=>góc MHB=góc MCO
=>góc OHB+góc OCB=180 độ
=>OHBC nội tiếp
=>góc BHC=góc BOC
=>góc BHC=2*góc BDC(ĐPCM)