Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. . . P A B C L D K I O H M
a) Dễ thấy: tứ giác ACOM nt
=> \(\widehat{MAO}=\widehat{MCD}\) (1)
Ta cx cm đc: tứ giác OMDB nt
=> \(\widehat{ODM}=\widehat{OBM}\) (2)
Mà: \(\widehat{MAO}=\widehat{OBM}\) (3)
=> \(\widehat{OCM}=\widehat{ODM}\) \(\Rightarrow\Delta OCD\) cân => đpcm
b) Dễ cm đc: tú giác LAHI nt
=> \(\widehat{ILH}=\widehat{IAH}\) (4)
lại cm đc tứ giác KIHB nt
=> \(\widehat{IHK}=\widehat{IBK}\) (5)
Mà: \(\widehat{IBK}=\widehat{IAH}\) (góc tạo bởi tia tiếp tuyến và dây cung) (6)
Từ (4)(5)(6)=> \(\widehat{ILH}=\widehat{IHK}\)
cm tương tự ta có: \(\widehat{IHL}=\widehat{IKL}\)
=> \(\Delta HIL~\Delta KIH\left(g.g\right)\)
\(\Rightarrow\)\(\frac{HL}{IL}=\frac{KH}{IH}\Rightarrow KH\cdot IL=IH\cdot HL\)
p/s: mink lm tắt có j k hiểu thì cmt dưới
a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.
b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà
- \(\widebat{OA}\)=\(\widebat{OB}\)→\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=Rbình.
- c)