K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOAB cân tại O

mà OH là đường trung tuyến

nên OH là đường trung trực của AB(1)

Ta có: IA=IB

nên I nằm trên đường trung trực của AB(2)

từ (1), (2) suy ra O,H,I thẳng hàng

b: Vì I là điểm chính giữa của cung CD nên IC=ID

mà OC=OD

nên OI là đường trung trực của CD

=>CD//AB hoặc CD trùng với AB

Vì I là điểm chính giữa của cung AB nên IA=IB

=>I nằm trên đường trung trực của AB(1)

Ta có: HA=HB

nên H nằm trên đường trung trực của AB(2)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(3)

Từ (1), (2) và (3) suy ra O,H,I thẳng hàng

Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R).  Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB  cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB...
Đọc tiếp

Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R).  Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB  cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F.  Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K  nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK  DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính  EF/MK ?

0
13 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra : IA =IB (hai cung bằng nhau căng hai dây bằng nhau)

Hay I nằm trên đường trung trực của AB

Mà OA =OB (=R)

Nên O nằm trên đường trung trực của AB

Suy ra OI là đường trung trực của AB

Vì H là trung điểm của AB nên OI đi qua trung điểm H

Vậy ba điểm I, H, O thẳng hàng

OB=OC

MB=MC

=>OM là trung trực của BC

=>OM vuông góc BC tại I

góc CHO+góc CIO=180 độ

=>CHOI nội tiếp