K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

C A B D H O

AB = 10cm 

BC= 12 cm 

Gọi \(H=AD\) \(\Omega\) \(BC\)

Ta có AD vuông góc với BC mà ADlà đường kính 

\(\Rightarrow\)AD là đường trung trực của BC 

\(\Rightarrow\)H là ttrung điểm \(\Rightarrow HC=HB=\frac{1}{2}.BC=6cm\)

Tam giác ABC vuông tại H 

\(\Rightarrow AH=\sqrt{AB^2-HB^2}=8cm\)

Tam giác ABD vuông tại B (chắn nửa đương tròn )

\(\Rightarrow AD=\frac{AB^2}{AH}=\frac{10^2}{8}=12,5cm\)

\(\Rightarrow R=\frac{1}{2}.AD=6,25cm\)

Vậy bán kính của đườn tròn là : \(6,25cm\)

Chúc bạn học tốt !!!

19 tháng 8 2019

Mình cứ thấy sao sao í 

15 tháng 7 2020

A B C H O

a)

Gọi H là giao điểm của OC và AB,  \(\Delta AOB\)cân tại O ( OA = OB, bán kính ) . OH là đường cao nên cũng là đường phân giác. Do đó 

\(\widehat{AOC}=\widehat{BOC}\)

Vì AC là tiếp tuyến tại A của đường tròn (O) nên \(\widehat{OAC}=90^o\)

Xét 2 tam giác : OAC và OBC có :

\(OA=OB\left(=R\right)\)

\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)

OC chung

\(\Rightarrow\Delta OAC=\Delta OBC\left(c-g-c\right)\)

\(\Rightarrow\widehat{OAC}=\widehat{OBC}=\left(90^o\right)\)( hai góc tương ứng )

Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

=> CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)

b) Ta có: OH vuông góc AB nên H là trung điểm của AB ( quan hệ vuông góc giữa đường kính và dây )

\(\Rightarrow HA=HB=\frac{AB}{2}=12\)

Xét tam giác HOA vuông tại H , áp dụng định lí Py - ta - go , ta có :

\(OA^2=OH^2+HA^2\)

\(\Leftrightarrow15^2=OH^2+12^2\)

\(\Leftrightarrow OH^2=15^2-12^2=81\)

\(\Rightarrow OH=9\left(cm\right)\)

Xét tam giác vuông OAC có đường cao AH , áp dụng hệ thức và đường cao trong tam giác vuông , ta có :

\(OA^2=OH.OC\Rightarrow OC=\frac{OA^2}{OH}=\frac{15^2}{9}=25\left(cm\right)\)

Vậy : OC = 25 cm

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)

a: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

=>ΔBCD vuông tại C

=>CD//OA

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

=>ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiêp tuyến của (O)