Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
A B O C D M E F K I N L
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
a) cm tứ giác CHOD nội tiếp, rồi sẽ cm đc HK là phân giác của tam giác HAC, suy ra đpcm
b) Gọi N là giao điểm của AB và OI, cm OI.ON = OH.OM = R2 => ON = R2/OI mà d cố định nên OI không đổi
A B C O I D M K S H
a) Ta có CA,CM là các tiếp tuyến từ C tới đường tròn (O) => OC là phân giác của ^AOM => ^MOC = ^AOC
Ta thấy ^CMD là góc chắn nửa đường tròn (I) => ^CMD = 900 => ^CMD + ^CMO = 1800
=> 3 điểm D,M,O thẳng hàng => ^DOC = ^MOC. Mà ^MOC = ^AOC nên ^DOC = ^AOC
Hai đường tròn (O),(I) cùng tiếp xúc với a => CD // AB (Cùng vuông góc với a)
Do đó ^AOC = ^DCO (So le trong) => ^DOC = ^DCO => \(\Delta\)ODC cân tại D
Lại có DK vuông góc OC tại K (Vì ^DKC chắn nửa đường tròn) => K là trung điểm OC (đpcm).
b) Gọi đường thẳng qua D vuông góc với BC cắt BC,AB lần lượt tại H,S.
Dễ thấy điểm H nằm trên đường tròn (I) => ^HMO = ^HCD = ^HBO (Do CD // AB)
=> Tứ giác HOBM nội tiếp => ^OHB = ^OMB => 900 - ^OHB = 900 - ^OMB
=> ^OHS = 900 - ^ABM = ^MAB = ^ACO (Cùng phụ ^CAM) (1)
Ta lại có ^SHK = ^DCK = ^SOK (Vì AB // CD) => Tứ giác KHOS nội tiếp => ^OHS = ^OKS (2)
Từ (1) và (2) suy ra ^ACO = ^OKS => KS // AC. Xét \(\Delta\)CAO có:
K là trung điểm cạnh OC (cmt), KS // AC (cmt), S thuộc OA => S là trung điểm cạnh OA
Do 2 điểm O,A cố định nên S cũng cố định. Mà đường thẳng qua D vuông góc BC cắt OA tại S
Nên ta có ĐPCM.