Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>\(HA=HB=\dfrac{AB}{2}=2,4\left(cm\right)\)
Ta có: ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=3^2-2,4^2=3,24\)
=>\(OH=\sqrt{3,24}=1,8\left(cm\right)\)
OH+HC=OC
=>HC=OC-OH=5-1,8=3,2(cm)
b: Ta có: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=2,4^2+3,2^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔAOC có \(AO^2+AC^2=OC^2\)
nên ΔAOC vuông tại A
=>CA\(\perp\)OA tại A
=>CA là tiếp tuyến của (O)
b: Xét ΔCAB có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAB cân tại C
=>CA=CB
Xét ΔOAC và ΔOBC có
OA=OB
AC=BC
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
Xét (O) có
EA,ED là các tiếp tuyến
Do đó: EA=ED
Xét (O) có
FD,FB là các tiếp tuyến
Do đó: FD=FB
Chu vi tam giác CEF là:
\(CE+EF+CF\)
=CE+ED+DF+CF
=CE+EA+CF+FB
=CA+CB
=2CA
=8(cm)
A B O C H D E F K M I J
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.
a: Xét tứ giác ODAE có
góc ODA+góc OEA=180 độ
=>ODAE là tứ giác nội tiếp
b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)
\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)
c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có
góc IDK chung
=>ΔDIK đồng dạng vơi ΔDHE
=>DI/DH=DK/DE
=>DH*DK=DI*DE=2*IE^2
a: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC có
O là trung điểm của BC
OD//AC
Do đó: D là trung điểm của AB
b:
Ta có: ΔOAB cân tại O
mà OD là đường trung tuyến
nên OD\(\perp\)AB
=>OE\(\perp\)AB tại D
ΔOAB cân tại O
mà OE là đường cao(OE\(\perp\)AB tại D
nên OE là phân giác của \(\widehat{AOB}\)
=>\(\widehat{AOE}=\widehat{BOE}\)
Xét ΔOBE và ΔOAE có
OB=OA
\(\widehat{BOE}=\widehat{AOE}\)
OE chung
Do đó: ΔOBE=ΔOAE
=>\(\widehat{OBE}=\widehat{OAE}=90^0\)
=>EA là tiếp tuyến của (O)
c:Ta có: OE\(\perp\)AB
AB\(\perp\)AC
Do đó: OE//AC
Xét ΔFBC có
O là trung điểm của BC
OE//FC
Do đó: E là trung điểm của BF