Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi H là trung điểm của OA
Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó: H là trung điểm của BC
Xét tứ giác ABOC có
H là trung điểm của đường chéo AO
H là trung điểm của đường chéo BC
Do đó: ABOC là hình bình hành
mà OB=OC
nên ABOC là hình thoi
R B O C M A E
a) Bán kính OA vuông góc với BC nên MB = MC.
Lại có MO = MA ( gt )
Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.
Lại có: OA \(\perp\) BC nên OBAC là hình thoi.
b) Ta có: OA = OB (bán kính)
OB = BA (tính chất hình thoi).
Nên OA = OB = BA => \(\Delta AOB\)đều => ∠AOB = 60o
Trong tam giác OBE vuông tại B ta có:
BE = OB . tg∠AOB = OB . tg60o = \(R.\sqrt{3}\)
a: Xét tứ giác ABOC có
H là trung điểm của OA
H là trung điểm của BC
Do đó: ABOC là hình bình hành
mà OA=OB
nên ABOC là hình thoi