Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
1. Xét nửa đường tròn (O) , có:
AC, CD là 2 tiếp tuyến của nửa đường tròn (O) (tiếp điểm A, D) (gt)
=> CA = CD , \(\widehat{CAO}=\widehat{CDO}=90^o\)
Xét tứ giác CAOD, có:
\(\widehat{CAO}+\widehat{CDO}=90^o+90^o=180^o\)
\(\widehat{CAO}\)và \(\widehat{CDO}\)là 2 góc đối nhau
=> ACDO là tứ giác nội tiếp
Xét \(\Delta CDM\)và \(\Delta CBD\), có:
\(\widehat{MCD}chung\)
\(\widehat{CDM}=\widehat{CBD}\)(góc nội tiếp và góc tạo bời tia tiếp tuyến và dây cung cùng chắn \(\widebat{MD}\) )
\(\Rightarrow\Delta~\Delta\left(gg\right)\)
\(\Rightarrow\frac{CD}{CB}=\frac{CM}{CD}\Leftrightarrow CD^2=CM.CB\)
Bài làm :
a) Ta có :
\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)
\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)
Từ đó ; ta có :
\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)
=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện = 180 độ
=> Điều phải chứng minh
b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp
\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)
Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC
\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)
Vì CD⊥AB ; MH⊥AB
=> CD//MH
=>∠ADC = ∠AMH ( 2góc so le trong ) (3)
Từ (1) ; (2) ; (3)
\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)
=> Điều phải chứng minh
c)∠AOC = 45o
=>∠COB = 180 - 45 = 135o
\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)
a) Xét tứ giác AHMC có
góc ACM + góc AHM = 180 độ
Vậy tứ giác AHMC nội tiếp